B样条插值的现成matlab程序,3次均匀B样条插值函数
2025/4/14 19:39:32 558B matlab程序
1
Ostu方法又名最大类间差方法,通过统计整个图像的直方图特性来实现全局阈值T的自动选取,其算法步骤为:1)先计算图像的直方图,即将图像所有的像素点按照0~255共256个bin,统计落在每个bin的像素点数量2)归一化直方图,也即将每个bin中像素点数量除以总的像素点3)i表示分类的阈值,也即一个灰度级,从0开始迭代4)通过归一化的直方图,统计0~i灰度级的像素(假设像素值在此范围的像素叫做前景像素)所占整幅图像的比例w0,并统计前景像素的平均灰度u0;
统计i~255灰度级的像素(假设像素值在此范围的像素叫做背景像素)所占整幅图像的比例w1,并统计背景像素的平均灰度u1;
5)计算前景像素和背景像素的方差g=w0*w1*(u0-u1)(u0-u1)6)i++;
转到4),直到i为256时结束迭代7)将最大g相应的i值作为图像的全局阈值
2025/4/13 20:54:49 3KB OSTU 多阈值分割 MATLAB
1
用MATLAB编写信道容量程序%信道容量C计算的Matlab程序clc;clearall;N=input('输入信源符号X的个数N=');M=input('输出信源符号Y的个数M=');p_yx=zeros(N,M);%程序设计需要信道矩阵初始化为零fprintf('输入信道矩阵概率\n')fori=1:Nforj=1:Mp_yx(i,j)=input('p_yx=');%输入信道矩阵概率ifp_yx(i)<0error('不符合概率分布')endendend
2025/4/12 1:04:54 2KB 信道容量
1
无线网络中的信道译码算法,用LDPC编码的BP译码算法,程序相当精炼,迭代次数很少就能够译码
2025/4/11 11:43:19 4KB BP译码 matlab
1
表面肌电信号处理的matlab程序,包括带通滤波、50Hz陷波滤波程序,以及计算时域、频域的指标iMEG、RMS,MF、MPF
1
使用matlab程序编写som算法,提供程序实现方法。
2025/4/10 1:50:55 1.35MB som算法
1
马尔科夫链matlab程序包。
马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态。
举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
当然这么说可能有些武断,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等,当然MCMC也需要它。
    如果用精确的数学定义来描述,则假设我们的序列状态是...Xt−2,Xt−1,Xt,Xt+1,......Xt−2,Xt−1,Xt,Xt+1,...,那么我们的在时刻Xt+1Xt+1的状态的条件概率仅仅依赖于时刻XtXt,即:P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)    既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。
我们来看看下图这个马尔科夫链模型的具体的例子。
2025/4/8 19:03:14 15KB 马尔科夫链
1
TunningofPIDcontrollerusingParticleSwarmOptimization(基于粒子群优化的PID控制器整定)包括完整的matlab程序以及simulink仿真。
2025/4/8 1:23:34 29KB PID PSO 粒子群 PID控制器
1
【GNSS/INS松组合导航Matlab程序】是一种在航空航天、自动驾驶、航海等领域广泛应用的导航技术,它结合了全球导航卫星系统(GNSS)和惯性导航系统(INS)的优点,提高了定位精度和稳定性。
在Matlab环境中实现这种松组合导航,能够方便地进行算法设计、仿真与验证。
我们要理解GNSS和INS的基本原理。
GNSS,如GPS(全球定位系统),通过接收来自卫星的信号来确定地面设备的位置、速度和时间。
而INS则依赖于陀螺仪和加速度计来测量载体的运动状态,无需外部参考即可连续提供位置、速度和姿态信息。
然而,GNSS可能会受到遮挡或干扰,INS则存在累积误差问题,松组合导航正是为了解决这些问题。
松组合导航的关键在于数据融合。
在Matlab程序中,通常会先利用GNSS数据生成初始的轨迹,然后根据这个轨迹产生模拟的惯导数据,包括陀螺仪和加速度计的输出。
这部分涉及到了信号处理、滤波理论和随机过程的知识,比如卡尔曼滤波(KalmanFilter)常被用于融合这两类传感器的数据。
接下来,这些模拟数据会被输入到惯导解算器中,进行运动状态的更新和校正。
惯导解算通常涉及到牛顿-欧拉方程、四元数表示法等,用于计算载体的位置、速度和姿态。
在Matlab中,可以利用内置的函数或自定义算法来实现这一过程。
仿真完成后,会使用这些模拟的GPS和INS数据进行松组合导航的实现。
松组合意味着GNSS和INS系统保持相对独立,各自进行数据处理,然后在一个高层次上进行信息交换。
这样做的好处是可以避免一个系统的误差影响另一个系统,同时保留各自的优点。
组合导航算法可能包括简单的数据融合策略,如时间同步或者更复杂的滤波算法。
在【sins+gnss】这个压缩包中,可能包含了实现上述功能的Matlab源代码文件,如初始化配置文件、数据生成脚本、滤波算法实现、结果分析工具等。
用户可以通过阅读和运行这些代码,深入理解松组合导航的工作原理,并对其进行定制和优化。
GNSS/INS松组合导航Matlab程序是导航技术研究的重要工具,涵盖了卫星导航、惯性导航、数据融合等多个领域的知识。
通过对这套程序的学习和实践,不仅可以掌握相关算法,还可以提升在复杂环境下的定位能力,对于科研和工程应用具有很高的价值。
2025/4/7 15:39:40 6.49MB matlab GNSS/INS
1
用小波处理一维信号matlab实验,包括小波分解,阈值选择等。
2025/4/7 12:28:22 992B 小波 降噪
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡