本文详细介绍了在GoogleEarthEngine(GEE)中提取水体边界的方法和步骤。
首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。
其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。
接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。
最后,进行后续处理以优化结果。
文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。
整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。
在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。
GoogleEarthEngine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。
利用GEE平台获取遥感影像数据是水体边界提取的第一步。
通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。
这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。
获取数据后,研究者需通过一系列图像处理技术来提取水体信息。
水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。
常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。
这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。
在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。
提取出的水体边界往往需要进一步的处理来优化结果。
边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。
这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。
为了确保水体边界的准确性,后续处理工作至关重要。
这包括影像预处理、滤波、平滑以及可能的目视检查等。
预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。
滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。
在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。
文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。
这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。
此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。
这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。
这大大降低了用户的技术门槛,提高了工作效率。
在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。
这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。
随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025/12/5 22:44:52 6KB 软件开发 源码
1
本数据为2024年中国省市县行政区划矢量数据(含审图号,仅供地图可视化),该数据包含省界、市界、县界,坐标系为GCS_WGS_1984。
数据来源:国家地理信息公共服务平台天地图审图号:审图号:GS(2024)0650号注:1、数据更新时间:2024年1月2、该数据仅供地图可视化使用2024年中国的省市县行政区划矢量数据是地理信息系统(GIS)中非常重要的数据资源,它包含了中国所有省份、城市和县的行政界限信息,这些信息以矢量图形的形式展现,能够精确地在地图上绘制出各个行政区域的边界。
这类数据对于进行区域分析、资源规划、城市规划、交通规划等具有重要意义,尤其在公共管理和决策支持系统中,为管理者提供了直观的地理信息参考。
本数据集不仅覆盖了省级、市级和县级三个行政级别,而且按照国家的行政区划进行了详细划分,保证了数据的完整性和准确性。
使用GCS_WGS_1984坐标系统,这是国际上广泛使用的一种地理坐标系统,能够确保数据与其他国际地理信息系统数据的兼容性,方便进行全球范围内的地图可视化和数据整合。
数据的来源是国家地理信息公共服务平台——天地图,这是一个权威的地理信息数据服务平台,能够提供包括地图服务、位置服务、地理编码服务等多种形式的地理信息服务。
确保了数据的专业性和权威性。
在使用这些数据时,需要注意的是数据的使用目的。
根据数据描述中提到的“仅供地图可视化使用”,这意味着该数据集不得用于除地图可视化之外的其他目的,比如商业开发、出版印刷等。
此外,数据中包含了审图号GS(2024)0650号,这个审图号表示该数据已经通过了国家相关部门的审核和批准,可以在法律允许的范围内使用。
值得注意的是,数据更新时间是2024年1月,这保证了数据的时效性,反映了最新的行政区划调整情况。
这对于需要追踪最新行政区划变更的研究人员和相关工作人员来说尤为重要。
由于数据是以矢量形式存在,它比栅格数据具有更高的灵活性和可编辑性。
用户可以根据自己的需要进行拉伸、缩放、旋转等操作,而不会损失图像质量。
矢量数据还便于进行属性数据的附加和查询,可以通过属性信息(如地区名称、行政级别等)来对特定区域进行检索。
在实际应用中,这类行政区划矢量数据可以应用于多种GIS软件中,如ArcGIS、MapInfo、SuperMap等,也可以在Excel中进行数据管理和分析,尤其是当需要将行政区划数据与其他统计数据结合进行地理分析时。
用户可以根据需求将数据导入相应的GIS软件中,进行地图的绘制、分析和输出。
尽管压缩包文件的文件名称列表中只提供了一个名为“资料数据_444_first.zip”的文件,但可以推测该压缩包内包含了2024年中国省市县行政区划矢量数据的所有相关文件,可能包括了不同格式的矢量文件(如.shp、.mif等),以适应不同的GIS软件和应用环境。
用户在解压并使用这些数据之前,应当检查数据的完整性和可用性,并按照软件的要求进行数据格式转换或导入操作。
2024年中国省市县行政区划矢量数据集作为地理信息的重要组成部分,不仅具有权威性和时效性,而且在数据来源和使用许可方面也做了明确的规定。
这些数据对于进行地理空间分析和可视化具有重要的应用价值,有助于提高公共决策的科学性和准确性。
2025/12/5 0:03:37 551B excel
1
2024年省、市、县三级行政区划数据由国家基础地理信息中心发布,通过《2024版国家地理信息公共服务平台(天地图)》正式对外提供。
这份数据涵盖了最新的省市县三级行政区划信息,更新于2024年1月,提供了详细的矢量数据下载服务。
数据格式原为GeoJSON,已被转换为更广泛使用的shp格式,便于GIS应用和分析一、数据介绍数据名称:2024年省、市、县三级行政区划数据0650号数据年份:2024年样本范围:省、市、县、九段线数据格式:地图格式-shp、geojson二、指标说明包括省、市、县三级,增加了九段线数据。
数据的更新时间为2024年1月,数据格式为GeoJSON,审图号为GS(2024)0650号,坐标系为GCS_WGS_1984。
三、数据文件省市县三级的行政区划数据-Geojson.zip;
省市县三级的行政区划数据-shp.zip
2025/12/5 0:03:02 13.93MB 行业研究
1
这个一个基于DDS技术的FPGA函数信号发神器设计程序。
里面包含了正弦波、三角波、方波、2ASK、2PSK信号的产生。
频率输出精度优于10-5。
程序设计清晰简单,适合初学者使用借鉴。
开发平台是Quartus9.0
2025/12/4 12:13:28 1.07MB DDS 信号发生器 正弦波 三角波、方波
1
dcm4chePACS是宁净(嘟嘟熊)为我们提供的PACS服务器,是INTERNET网上的一个开源项目,是一个多平台、开源、免费、企业级的PACS服务器,支持DICOM及HL7协议,数据库使用的是开源数据库MySQL。
可以使用dcm4chePACS轻松管理上T级别的数据。
1
使用nRF52832平台的I2S接口,外部配合codec,实现短音频的播放功能,可参考~
2025/12/3 6:06:08 4.74MB nRF52832 I2S 播放音频
1
国内知名平台针对西门子的PLM系统做的详细介绍,可供企业CIO、信息部长、项目经理等从事信息化工作的学者借鉴,完整详实地描述了PLM对企业管理优化的途径
2025/12/2 16:25:19 1.62MB Detail intro
1
在matlab平台下,通过不动点迭代的方法求方程的根,要注意初值的设定
1
在IT领域,尤其是在嵌入式开发、物联网应用或者设备控制等方面,串口通信是一个非常重要的技术。
Qt作为一个跨平台的应用程序开发框架,提供了方便的API用于实现串口读写功能,使得开发者能够在Windows等操作系统上进行相关的编程工作。
本文将详细讲解如何在Qt环境下进行Windows下的串口读写操作。
我们要了解串口通信的基本概念。
串口通信,也称为串行通信,是通过串行数据传输的方式进行设备间的通信。
在Windows系统中,串口通常以COM1、COM2等命名,可以通过波特率、数据位、停止位、校验位等参数进行配置。
在Qt中,串口操作主要依赖于`QSerialPort`类。
`QSerialPort`提供了丰富的成员函数来设置和管理串口,如打开、关闭串口,设置波特率、数据位、停止位、校验位,以及读取和写入数据。
1.**初始化串口**:你需要创建一个`QSerialPort`对象,并指定要使用的串口号。
例如:```cppQSerialPortserial("COM1");```2.**配置串口参数**:接下来,我们需要设置串口的各项参数。
比如,设置波特率为9600,数据位为8,停止位为1,校验位为无校验:```cppserial.setBaudRate(QSerialPort::Baud9600);serial.setDataBits(QSerialPort::Data8);serial.setStopBits(QSerialPort::OneStop);serial.setParity(QSerialPort::NoParity);```3.**打开串口**:确保设置好参数后,可以尝试打开串口:```cppif(!serial.open(QIODevice::ReadWrite)){qDebug()<<"无法打开串口:"<<serial.errorString();return;}```4.**读取数据**:`QSerialPort`提供了`readAll()`函数来读取所有可用的数据,或者使用`read()`函数指定要读取的字节数。
例如:```cppQByteArraydata=serial.readAll();```5.**写入数据**:使用`write()`函数向串口写入数据:```cppQStringmessage="Hello,World!";serial.write(message.toUtf8());```6.**事件驱动**:如果需要持续监听串口数据,可以使用信号和槽机制。
例如,连接`readyRead`信号到相应的处理函数:```cppconnect(&serial,&QSerialPort::readyRead,this,&YourClass::onReadyRead);```7.**关闭串口**:当不再需要使用串口时,记得关闭它:```cppserial.close();```在提供的“Qtwindows下串口读写”示例工程中,可能包含了以上所述的串口操作代码,以及一些错误处理和用户交互的逻辑。
初学者可以通过分析和运行这个示例,更深入地理解Qt在Windows下的串口读写操作。
在实际应用中,可能还需要考虑到线程安全、异常处理、多串口管理等问题,这都需要根据具体需求进行扩展和优化。
Qt的`QSerialPort`类为开发者提供了一种简单易用的方式来实现Windows下的串口通信,通过学习和实践,你可以快速掌握这一技能,为你的项目添加强大的硬件交互能力。
2025/11/30 15:42:27 5KB Windows 串口 demo
1
欢迎大家交流,资源共享,很高兴使用这个平台,这个程序已经运行测试,无错误,欢迎使用
2025/11/29 15:46:19 59KB Delaunay三角网
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡