无线通信最大的优点在于其传输速率高、功耗小、成本低。
但是,却要面对环境因素的挑战。
与此同时,人们对无线通信系统的要求在不断地提高,希望其能提供更高的数据传输速率。
在这样的背景下,超宽带(UWB,UltraWideBand)技术引起了人们的重视,已逐渐成为无线通信领域研究开发的一个热点。
超宽带无线通信系统的设计提供了电线波传播工具,弥补了在高速运动状态下信道建模的研究不足,丰富了信道建模理论,为车辆提供安全且最舒适的运行路线,而这一切归功于一个智能有效的无线通信系统。
因此,我们必须深入地开展车对车超宽带无线通信技术的研究。
2024/4/22 18:29:01 589KB UWB
1
由XavierCarcelle编著的《电力线通信技术与实践》首先深入浅出地介绍了电力线通信技术的基本原理,包括电力线通信技术的结构、功能、安全性、帧结构等内容。
然后图文并茂地从电力线应用实践的角度进行了全方位的阐述,包括电力线通信技术的设备情况、安装步骤、配置方法等内容。
随后循循善诱地剖析了家庭环境、商业环境、社区环境下的电力线通信系统的拓扑结构、接入方法、应用方式以及有关注意事项和成本简析等方面的问题。
最后介绍了混合PLC技术等内容。
2024/4/20 2:06:11 16.69MB 电力线 Xavier Carcelle
1
数字调制解调技术在数字通信中占有非常重要的地位,数字通信技术与FPGA的结合是现代通信系统发展的一个必然趋势。
文中介绍了QPSK调制解调的原理,并基于FPGA实现QPSK调制解调电路。
MAX+PLUSII环境下的仿真结果表明了该设计的正确性。
2024/3/31 19:13:45 176KB FPGA QPSK 调制解调电路 vhdl
1
软件无线电是最近几年提出的一种实现无线电通信的体系结构,被认为是继模拟通信、数字通信之后的第三代无线电通信技术。
在无线电应用领域,软件无线电已经成为一个重要的研究课题。
特别是在信息成为主导市场竞争优胜劣汰、军事斗争成败等重大问题的关键因素后,软件无线电技术作为一种有利于技术体制改革创新、有利于提高信息处理能力的关键技术,已经得到了飞速的发展。
介绍了软件无线电的基本概念、功能结构、关键技术等问题,同时阐述了软件无线电的应用和发展前景。
2024/3/24 12:10:40 753KB 软件无线电
1
通过管理制度、管理手段与管理方法的创新,以新一代信息网络基础为依托,融合空间信息技术、云计算、大数据分析、物联网、3G/4G通信技术等多项前沿技术,构建城市“智慧园林”管理系统,实现“全市一张网,监管一条线,展示一平台”,从而对园林绿化事前、事中、事后的全过程精细化管理,全面提升园林绿化精细化管理水平。
1
5G即第五代移动通信技术,相比于3G/4G具有大宽带、高速率、广连接等特性。
5G的商用将开启万物互联的时代,加速推进AI、物联网等产业的发展,数字产业对通讯基础设施的依赖将使得5G新基建将成为疫情之后提振经济的重要驱动
2024/2/27 6:32:08 2.66MB 5g 应用场景 2021 研究
1
关于无线通信技术的经典著作,被多所著名大学采用为教材
2024/2/19 9:20:18 9.99MB 无线通信
1
IMT-2020(5G)推进组于2013年2月由我国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架构基于原IMT-Advanced推进组,是聚合移动通信领域产学研用力量、推动第五代移动通信技术研究、开展国际交流与合作的基础工作平台
2024/2/13 14:46:06 3.45MB 5g
1
利用MATLAB平台的SIMULINK可视化仿真功能,完整的实现了CDMA无线通信系统扩频调制解调的建模、仿真和分析;
介绍了CDMA通信技术、发展方向及其主要环节(包括扩频技术、调制解调技术、信道等)的参数设置。
2024/2/6 20:48:58 588KB simulink CDMA 扩频通信
1
3GPP长期演进(LTE)技术原理与系统设计.pdf添加了完整的书签支持跳转方便阅读比csdn上提供的带书签的这个版本清晰封面1序言4前言6目录8第1章 背景与概述141.1 什么是LTE141.2 LTE项目启动的背景151.2.1 移动通信与宽带无线接入技术的融合151.2.2 国际宽带移动通信研究和标准化工作161.2.3 我国宽带移动通信研究工作181.3 3GPP简介181.3.1 3GPP的组织结构191.3.2 3GPP的工作方法201.3.3 3GPP技术规范的版本划分211.4 LTE研究和标准化工作进程251.4.1 LTE项目的时间进度251.4.2 LTE协议结构271.5 LTE技术特点291.5.1 LTE需求291.5.2 系统架构301.5.3 空中接口311.5.4 移动性和无线资源管理361.5.5 自配置与自优化371.5.6 和LTE相关的其他3GPP演进项目371.6 LTE和其他宽带移动通信技术的对比401.6.1 性能指标对比401.6.2 关键技术对比421.7 小结44参考文献44第2章 LTE需求452.1 系统容量需求462.1.1 峰值速率462.1.2 系统延迟462.2 系统性能需求472.2.1 用户吞吐量与控制面容量472.2.2 频谱效率482.2.3 移动性492.2.4 覆盖492.2.5 进一步增强的MBMS492.2.6 网络同步502.3 系统部署需求512.3.1 部署场景512.3.2 频谱扩展性512.3.3 部署频谱512.3.4 与其他3GPP系统的共存和互操作522.4 对无线接入网框架和演进的要求522.5 无线资源管理需求532.6 复杂度要求532.6.1 系统复杂度532.6.2 UE复杂度532.7 成本要求542.8 业务需求542.9 小结54参考文献55第3章 LTE物理层协议563.1 物理层概述563.1.1 协议结构563.1.2 物理层功能573.1.3 LTE物理层协议概要介绍573.2 物理信道与调制593.2.1 帧结构593.2.2 上行物理信道613.2.3 下行物理信道773.2.4 伪随机序列产生1023.2.5 定时1023.3 复用与信道编码1023.3.1 物理信道映射1023.3.2 信道编码和交织1033.4 物理层过程1243.4.1 同步过程1243.4.2 功率控制1243.4.3 随机接入过程1273.4.4 PDSCH相关过程1273.4.5 PUSCH相关过程1313.4.6 PDCCH相关过程1333.4.7 PUCCH相关过程1333.5 物理层测量1343.5.1 UE/E-UTRAN测量概述1343.5.2 UE/E-UTRAN测量能力134参考文献136第4章 LTE无线传输技术1384.1 双工方式1384.1.1 FDD双工方式1384.1.2 TDD双工方式1384.1.3 H-FDD双工方式1394.2 宏分集的取舍1404.2.1 宏分集技术在WCDMA中的应用情况1414.2.2 LTE系统对宏分集的取舍1424.3 下行多址技术1434.3.1 OFDMA技术方案1434.3.2 VSF-OFDM技术方案1484.3.3 OFDM/OQAM技术方案1514.3.4 多载波WCDMA(MC-WCDMA)技术方案1534.3.5 多载波TD-SCDMA(MC-TD-SCDMA)技术方案1564.3.6 下行多址技术的确定1564.4 上行多址技术1564.4.1 PAPR和立方量度(CubicMetric,CM)问题1574.4.2 采用PAPR降低的OFDMA(OFDMAwithPAPRReduction)技术方案1584.4.3 单载波频分多址(SC-FDMA)技术方案1604.4.4 单载波和频域均衡(SC-FDE)技术方案1614.
2024/1/23 9:26:20 42.69MB 3GPP长期演进 LTE 书签
1
共 146 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡