RTKLIB是一款开源的全球导航卫星系统(GNSS)软件工具包,由HiroshiHiranuma教授开发,广泛应用于GNSS数据处理、实时定位、动态定位和精密单点定位等多个领域。
本压缩包文件“rtkilb_singlepos_rtklib”主要关注的是RTKLIB在MATLAB环境下的单点定位功能。
单点定位是GNSS接收机最基本的定位方法,它通过解算来自多个卫星的观测数据来确定地面接收机的位置。
在单频单点定位中,接收机仅使用一个频率的信号进行定位,这种方法通常适用于精度要求较低的场合,如车载导航、户外运动等。
而这个压缩包提供的MATLAB版本使得用户可以在MATLAB环境中实现单点定位的计算,这对于教学、研究或者快速原型验证非常有帮助。
主程序“rtklib—singlepos”是实现单点定位的核心代码。
这个程序可能包含了以下关键步骤:1.**数据预处理**:读取O文件(观测数据)和N文件(导航数据)。
O文件包含了接收机接收到的卫星信号的伪距或相位观测值,N文件则包含卫星的轨道和钟差信息。
2.**电离层延迟校正**:单频接收机无法直接测量电离层延迟,因此需要利用模型进行估算和校正。
程序可能内置了Klobuchar模型或其他电离层模型。
3.**对流层延迟校正**:同样,也需要考虑大气对流层的影响,一般使用气象参数进行校正。
4.**坐标转换**:将观测值从卫星坐标系转换到地心坐标系,这通常涉及地球椭球参数的使用。
5.**几何距离解算**:基于卫星的已知位置和观测值,计算接收机的三维位置。
这通常采用非线性最小二乘法进行迭代优化。
6.**误差处理**:包括钟差校正、多路径效应消除等,以提高定位精度。
7.**结果输出**:最终计算出的接收机坐标和其他相关信息会被输出,供用户分析。
在MATLAB环境中运行这个程序,用户可以方便地调整算法参数,进行各种假设和试验,同时利用MATLAB强大的可视化功能来直观地展示定位结果。
这对于研究不同环境条件下的定位性能,或者进行定位算法的优化都具有很大的便利性。
“rtkilb_singlepos_rtklib”提供了在MATLAB环境中实现RTKLIB单点定位功能的工具,对于学习和研究GNSS定位技术的人来说是一个宝贵的资源。
通过理解和应用这些代码,用户不仅可以深入理解单点定位的基本原理,还能掌握如何在实际项目中运用这些技术。
2025/5/3 14:17:28 3.35MB rtklib
1
自己开发的风资源分析工具包WindAnalysis-WindAnalysis1-V1.4.1.zip本帖最后由He_Challen于2017-9-614:40编辑由于工作的原因,今年项目开始转型风电项目,在慢慢上手的过程中发现,风电所涉及的软件清一色北欧的,好不好用只有用了才知道。
因为仅是为前期风电开发做技术分析,老外的软件一个是不容易上手,二是操作复杂。
随下决心自己开发一套专门用于项目前期的风资源分析工具包。
就这样开始而一发不可收拾,从最开始的结构搭建、输出设计便沉迷此中两个月,推出的前三个版本都不太稳定,要么是兼容不好,要么是数据处理的时逻辑顺序有问题,总之在最初的三个版本在大量项目的测风数据的测试下暴漏出一堆又一堆的BUG。
说实话,中途曾想过放弃,一个人孤军奋战实在是太孤独难耐了,多年工作环境造就的内心还是比较强大的,最终还是坚持了下来。
在飞机上、动车上、出差的酒店里、办公桌前开始了一遍又一遍的调试修改,度过了一个又一个难免的夜晚。
最终完成的兼容性和稳定性都可靠的V.1.4.1版本,经反复测试没有问题后,将这个版本作为目前能完成的最终的版本发出来供同行们使用,方便工作和分析。
下面对工具包中的WindAnalysis1和WindAnalysis2的功能做个介绍,过一阵闲了编个教程发出来供大家使用。
WindAnalysis1工具包能够对获取的整个测风数据构建dateset结构体,根据时间序列进行综合整理分析,通过运行可以获得如下分析结果:a.不同高度风速、风向、温度、压强的时间序列分布图;
风速、风向、温度、压强.jpgb.整个测风数据质量判断,及质量分析图;
测风数据质量评估.jpgc.不同高度湍流强度按照风速的分布、各风速对应的湍流强度与其平均湍流强度的分布图;
湍流分布.jpgd.不同高度月平均风速分布图;
月平均风速.jpge.不同高度日平均风速分布图;
日平均风速.jpgf.不同高度风速频率分布直方图;
风频分布.jpgg.不同高度风速风向玫瑰图;
风向、风能玫瑰图.jpgh.风切变拟合和计算;
风切变拟合.jpgi.风切变系数随月分布图;
月风切变.jpgWindAnalysis2为针对特定高度H处的风资源进行详细分析,包括:a.测风时间序列上风速、湍流偏离测风周期内平均值的偏离程度;
风速、湍流时间序列分布.jpgb.风速的威布尔分布拟合和参数计算;
威布尔分布.jpgc.威布尔分布拟合的误差和相关系数R2的计算分析;
拟合误差分析.jpgd.风切变拟合和切边系数计算;
风切变拟合.jpge.指定轮毂高度处的平均风速推算及威布尔分布拟合;
轮毂高度处威布尔分布.jpgf.根据选型风机的参数,绘制功率曲线和推力系数曲线;
功率特性曲线.jpg不仅限于以上figure图文件的生成,还能够估算出指定轮毂高度hub(hub>H)测风塔处的发电量,在CommandWindow窗口中输出计算结果,作为风资源分析的参考。
计算结果.pngWindAnalysis风数据分析工具包教程-V1.4.pdfWindAnalysis1-V1.4.1.zipWindAnalysis2-V1.4.1.zip-------------------------------------------------------------------
2025/5/1 1:47:33 1.38MB matlab
1
本代码由STM32F103C8T6使用GPIO模拟I2C与VL53L0进行通信,读出VL53L0寄存器里测距的值,然后,由UART串口进行发送,测距范围为2m,测距误差为1cm左右,可用于长度、高度的测量。
1
以新疆红富士苹果为研究对象,探讨应用高光谱图像技术和最小外接矩形法预测其大小的研究方法。
提取苹果高光谱图像中可见红色区域受色度影响较小的713nm以及近红外区域793和852nm的3个波长图像,做双波段比运算处理。
比较所得双波段比图像可知,852/713双波段比图像中背景和前景灰度对比度最大。
对该图像做阈值分割以及形态闭运算去除果梗区域,使用8邻接边界跟踪法得到二值图像的轮廓坐标序列,采用最小外接矩形法求苹果的大小,与实测值建立回归方程。
结果表明,基于高光谱图像技术采用波段比算法,结合最小外接矩形法,能够有效地检测苹果大小,预测值与实际值最大绝对误差为3.06mm,均方根误差为1.21mm。
2025/4/29 18:04:53 359KB 最小外接矩形
1
该方法需要基于有限的观测数据估计自相关序列,当数据长度较短时,估计误差会比较大,AR参数的计算就会引入很大的误差。
从而导致功率谱估计出现谱线分裂与谱峰频率偏移等现象。
2025/4/22 16:02:25 18KB AR模型
1
OPENCVANN(类神经网路)手写数字辨识(opencv249_ann_digital_number)资料来源:https://blog.csdn.net/cherrywish/article/details/78761411https://blog.csdn.net/qq_15947787/article/details/51385861opencv249_ann_digital_number01-彩色转灰阶imread、改变图像解析度resize、灰阶转二值化threshold、二维数据转一维数据reshape、影像数据转ML运算数据convertTo、类神经CvANN_MLP、取出ML运算结果minMaxLoc目前训练结果-128,128*2,10opencv249_ann_digital_number02-彩色转灰阶imread、改变图像解析度resize、灰阶转二值化threshold、二维数据转一维数据reshape、影像数据转ML运算数据convertTo、类神经CvANN_MLP、取出ML运算结果minMaxLoc目前训练结果-128,128*2,10一亿次或10万分之一的误差为中止条件
2025/4/21 19:02:55 38.79MB 神经网路 OPENCV 手写 数字
1
设计了一种应用于KrF准分子激光波面整形的二元光学元件(BOE),实现了将波面整形变换为巴特沃斯(Butternorth)分布。
采用盖师贝格-撒克斯通(Gerchberg-Saxton,GS)算法实现优化设计,使用MATLAB软件模拟入射和出射光场。
通过对比迭代次数分别为10、100和1000次的模拟结果,研究盖师贝格-撒克斯通算法中迭代次数对整形效果的影响。
模拟出迭代次数为106次的整形结果,并且得到二元光学元件的相位分布。
模拟结果表明,出射光场呈巴特沃斯分布,实现了波面整形,矩形光斑能量占总能量的75.62%,能量的利用率较高,其均匀性的均方根(RMS)误差为0.1394%。
2025/4/17 4:54:24 1.62MB 激光技术 准分子激 波面整形
1
Matlab功率谱估计的详尽分析——绝对原创功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。
现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
ARMA谱估计叫做自回归移动平均谱估计,它是一种模型化方法。
由于具有广泛的代表性和实用性,ARMA谱估计在近十几年是现代谱估计中最活跃和最重要的研究方向之一。
二:AR参数估计及其SVD—TLS算法。
谱分析方法要求ARMA模型的阶数和参数以及噪声的方差已知.然而这类要求在实际中是不可能提供的,即除了一组样本值x(1),x(2),…,x(T)以供利用(有时会有一定的先验知识)外,再没有其它可用的数据.因此必须估计有关的阶数和参数,以便获得谱密度的估计.在ARMA定阶和参数之估计中,近年来提出了一些新算法,如本文介绍的SVD—TLS算法便是其中之一。
三:实验结果分析和展望1,样本数多少对估计误差的影响。
(A=[1,0.8,-0.68,-0.46])图1上部分为N=1000;
下部分为取相同数据的前N=50个数据产生的结果。
图1N数不同:子图一N=1000,子图二N=200,子图三N=50由图可知,样本数在的多少,在对功率谱估计的效果上有巨大的作用,特别在功率谱密度函数变化剧烈的地方,必须有足够多的数据才能完整的还原原始功率谱密度函数。
2,阶数大小对估计误差的影响。
A=[1,-0.9,0.76]A=[1,-0.9,0.76,-0.776]图二阶数为二阶和三阶功率密度函数图A=[1,-0.9,0.86,-0.96,0.7]A=[1,-0.9,0.86,-0.96,0.7,-0.74]图三阶数为三阶和四阶功率密度函数图如图所示,阶数相差不是很大时,并不能对结果产生较大的影响。
但是阶数太低,如图二中二阶反而不能很好的估计出原始值。
3,样本点分布对估计误差对于相同的A=[1,-0.9,0.86,-0.96,0.7];
样本的不同,在估计时的误差是不可避免的。
因此,我们在取得样本时,应该尽可能的减少不必要的误差。
图四:不同的样本得到不同的估计值4,奇异值的阈值判定范围不同对结果的影响。
上图是取奇异值的阈值大于等于0.02,而下图是取阈值大于等于0.06,显然在同种数据下,阈值的选取和最终结果有密切关系。
由于系数矩阵和其真实值的逼近的精确度取决于被置零的那些奇异值的平方和。
所以选取太小,导致阶数增大,选取太大会淘汰掉真实的系数。
根据经验值,一般取0.05左右为最佳。
2025/4/16 9:53:51 1KB arma matlab
1
本人翻遍了CSDN都找不到一个正确的TOA定位算法程序,唯一找到的一个是用最小二乘解的(参考文献N.Patwari,J.N.Ash,S.Kyperountas,A.O.Hero,R.L.Moses,andN.S.Correal,"Locatingthenodes:cooperativelocalizationinwirelesssensornetworks,"IEEESignalProcessingMagazine,vol.22,no.4,pp.54-69,2005.),性能无法达到克拉美罗界。
因此本人自己重新写了一个程序,参考该领域著名学者K.C.Ho的文章(参考文献Z.MaandK.C.Ho,"TOAlocalizationinthepresenceofrandomsensorpositionerrors,"in2011IEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing(ICASSP),2011,pp.2468-2471.)。
该算法适用于传感器位置有误差/无误差的情况,算法性能能够达到克拉美罗界。
示例程序中给出了CRLB的程序,场景为传感器有误差的情况。
程序运行结果与参考文献一致。
(搞不懂现在的人都是要什么50积分,多分享下不好吗?)******特别提示******:本代码多处使用了Matlab2016a以后支持的新语法,旧版本无法正常运行的,请自行修改代码或更新Matlab版本!!!
2025/4/14 5:11:46 2KB TOD 定位 最小二乘 传感器误差
1
载波跟踪环路设计是GPS接收机中的关键技术,载波环鉴别器的类型确定了跟踪环的类型,为了有效地防止因为数据跳变引起的鉴别误差,并且使其频率鉴别范围大,精度高,采用一种二阶锁频环(FLL)辅助三阶锁相环(PLL)的方法。
通过Matlab仿真载波环路比较了两种鉴频和鉴相算法的性能。
结果表明,该方法鉴别范围大,精度高,切实可行。
2025/4/11 16:33:07 164KB RF|微波
1
共 563 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡