浙江大学计算方法全套课件,内容包括线性代数方程组非线性方程求根数值积分数值微分微分方程特征值与特征向量等
2023/3/9 2:12:28 12.93MB 计算方法 浙江大学 免费 课件
1
艾滋病疗法的评价及疗效的预测摘要艾滋病是至今人类仍未征服的疾病,流行发展趋势越来越严峻,攻克艾滋病是人类面临的一大难题。
本文给出了艾滋病患者的临床治疗数据,要考虑预测继续治疗的效果,并评价各种治疗方案优劣,预测即根据已有的数据信息推算将来的数据,评价方案的优劣属于决策类问题。
对问题(1),先分析CD4和HIV的浓度的变化趋势,建立微分方程模型,无法求解析解,用软件matlab求出CD4和HIV的参数表达式,从附件的数据信息中挖掘出具有普遍特征的数据,用回归法求参数的值,因为得到的表达式不是常规的形式,只能回归出HIV表达式的参数,CD4的无法求出。
作数据分布图,发现描出的形状同二次曲线的图形相近,二次曲线的图形特性符合CD4的浓度变化趋势。
于是建立待定系数的二次曲线方程模型,先拟合出多组参数值,再用回归法确定最后的值,得出的二次曲线方程。
根据HIV和CD4的浓度表达式结合可以作出提前终止治疗的预测,终止时间在第30周。
问题(2),预测四种疗法的继续治疗效果。
首先将患者按CD4初始浓度分类,仍引用前面的二次曲线模型,用附件二的数据回归出曲线方程的参数。
回归过程中考虑到是要评价不同的疗法,根据疗法的不同把数据分为四类,回归得出四组参数,相应的表达式就是这种疗法的CD4的浓度变化曲线方程。
比较四种疗法的优劣,采用CD4浓度最大值和取得最大值的时间为评判标准,结合更加细化的分类数据画出的图形,从理论上和直观上都证实了评价的结果:疗法4效果最好,疗法3次之,疗法2再次之,疗法1效果较差;
利用二次曲线模型得出最佳方案停止用药的最佳时间为20周,同时由分类法模型得出在四种不同CD4初始浓度的条件下最佳方案停止用药的最佳时间分别为:24周、16周、16周、24周。
两种模型的结果相接近。
问题(3)要考虑药品价格因素的影响,价格和药效的权重无法确定,通过假设权重参数来定量表示价格和药效的关系。
采用层次分析法构建层次结构模型,用特征向量归一化并求组合权向量,找到疗法功能和价格权重的关系。
根据不同经济状况的国家的价格权重的值不一样,得到不同的疗法评价结果。
总结出如下的结论:不发达国家经济落后,价格权重较大,疗法1的评价值较高,疗法4的评价值较低,适合疗法1,对于发达国家应当推广疗法4。
文章的最后对模型地优缺点进行了评价,并作了推广。
关键词艾滋病疗法评价微分方程二次曲线回归层次分析
1
对文本进行聚类,文本预处理-_-构造特征向量-_-聚类,紧缩包内含有实验用语料
2023/2/17 16:01:23 749KB 文本聚类 K-Means算法 python2.6 MySQL
1
功率迭代演示了计算矩阵特征向量的幂迭代方法。
专为哈佛大学数学121而设计。
2023/2/12 1:20:53 197KB JavaScript
1
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档简介文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。
而文本分类是文本挖掘中一个非常重要的手段与技术。
现有的分类技术都已经非常成熟,SVM、KNN、DecisionTree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。
但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡、小样本的训练、Unlabeled样本的有效利用、如何选择最佳的训练样本等。
这些问题都将导致curveofdimension、过拟合等问题。
这个开源系统的目的是集众人智慧,将文本挖掘、文本分类前沿领域效果非常好的算法实现并有效组织,形成一条完整系统将文本挖掘尤其是文本分类的过程自动化。
该系统提供了Python和Java两种版本。
主要特征该系统在封装libsvm、liblinear的基础上,又增加了特征选择、LSA特征抽取、SVM模型参数选择、libsvm格式转化模块以及一些实用的工具。
其主要特征如下:封装并完全兼容*libsvm、liblinear。
基于Chi*的featureselection见feature_selection基于LatentSemanticAnalysis的featureextraction见feature_extraction支持Binary,Tf,log(tf),Tf*Idf,tf*rf,tf*chi等多种特征权重见feature_weight文本特征向量的归一化见Normalization利用交叉验证对SVM模型参数自动选择。
见SVM_model_selection支持macro-average、micro-average、F-measure、Recall、Precision、Accuracy等多种评价指标见evaluation_measure支持多个SVM模型同时进行模型预测采用python的csc_matrix支持存储大稀疏矩阵。
引入第三方分词工具自动进行分词将文本直接转化为libsvm、liblinear所支持的格式。
使用该系统可以做什么对文本自动做SVM模型的训练。
包括Libsvm、Liblinear包的选择,分词,词典生成,特征选择,SVM参数的选优,SVM模型的训练等都可以一步完成。
利用生成的模型对未知文本做预测。
并返回预测的标签以及该类的隶属度分数。
可自动识别libsvm和liblinear的模型。
自动分析预测结果,评判模型效果。
计算预测结果的F值、召回率、准确率、Macro,Micro等指标,并会计算特定阈值、以及指定区间所有阈值下的相应指标。
分词。
对文本利用mmseg算法对文本进行分词。
特征选择。
对文本进行特征选择,选择最具代表性的词。
SVM参数的选择。
利用交叉验证方法对SVM模型的参数进行识别,可以指定搜索范围,大于大数据,会自动选择子集做粗粒度的搜索,然后再用全量数据做细粒度的搜索,直到找到最优的参数。
对libsvm会选择c,g(gamma),对与liblinear会选择c。
对文本直接生成libsvm、liblinear的输入格式。
libsvm、liblinear以及其他诸如weka等数据挖掘软件都要求数据是具有向量格式,使用该系统可以生成这种格式:labelindex:valueSVM模型训练。
利用libsvm、liblinear对模型进行训练。
利用LSA对进行FeatureExtraction*,从而提高分类效果。
开始使用QuickStart里面提供了方便的使用指导如何使用该系统可以在命令行(Linux或cmd中)中直接使用,也可以在程序通过直接调用源程序使用。
在程序中使用。
#将TMSVM系统的路径加入到Python搜索路径中importsyssys.path.insert(0,yourPath+"\tmsvm\src")importtms#对data文件夹下的binary_seged.train文件进行训练。
tms.tms_train(“../data/binary_seged.train”)#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测tms.tms_predict(“../data/binary_seged.test”,”../model/tms.config”)#对预测的结果进行分析,评判模型的效果tms.tms_analysis(“../tms.result”)在命令行中调用#对data文件夹下的binary_seged.train文件进行训练。
$pythonauto_train.py[options]../data/binary_seged.train#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测pythonpredict.py../data/binary_seged.train../model/tms.config#对预测的结果进行分析,评判模型的效果$pythonresult_anlaysis.py../tms.result上面的调用方式都是使用系统中默认的参数,更具体、灵活的参数见程序调用接口输入格式labelvalue1[value2]其中label是定义的类标签,如果是binaryclassification,建议positive样本为1,negative样本为-1。
如果为multi-classification。
label可以是任意的整数。
其中value为文本内容。
label和value以及value1和value2之间需要用特殊字符进行分割,如”\t”模型输出模型结果会放在指定保存路径下的“model”文件夹中,里面有3个文件,默认情况下为dic.key、tms.model和tms.config。
其中dic.key为特征选择后的词典;
tms.model为训练好的SVM分类模型;tms.config为模型的配置文件,里面记录了模型训练时使用的参数。
临时文件会放在“temp”文件夹中。
里面有两个文件:tms.param和tms.train。
其中tms.param为SVM模型参数选择时所实验的参数。
tms.train是供libsvm和liblinear训练器所使用的输入格式。
源程序说明src:即该系统的源代码,提供了5个可以在Linux下可以直接调用的程序:auto_train.py、train.py、predict.py为在Linux下通过命令行调用的接口。
tms.py为在程序中调用的主文件,直接通过importtms即可调用系统的所有函数。
其他文件为程序中实现各个功能的文件。
lsa_src:LSA模型的源程序。
dependence:系统所依赖的一些包。
包括libsvm、liblinear、Pymmseg在Linux32位和64位以及windows下的支持包(dll,so文件)。
tools:提供的一些有用的工具,包括result_analysis.py等。
java:java版本的模型预测程序,项目重要更新日志2012/09/21针对linux下的bug进行修正。
重新生成win和linux版本的。
2012/03/08增加stem模块,并修正了几个Bug。
2011/11/22tmsvm正式发布。
联系方式邮箱:zhzhl202@163.comThanks本系统引用了libsvm、liblinear的包,非常感谢Chih-JenLin写出这么优秀的软件。
本系统还引用了Pymmseg,非常感谢pluskid能为mmseg写出Python下可以直接使用的程序从最初的想法萌生到第一版上线,中间试验了很多算法,最终因为效果不好删掉了很多代码,在这期间得到了许多人的帮助,非常感谢杨铮、江洋、敏知、施平等人的悉心指导。
特别感谢丽红一直以来的默默支持。
2023/2/8 18:37:14 3.39MB 文本挖掘 tmSVM libSVM 支持向量机
1
资源是HOG特征提取算法的MATLAB代码,资源下载后直接能用,解压后打开anna_phog_demo.m,然后运行即可,提取的HOG特征向量即为工作空间中的feat变量。
相关的材料请参考博文https://blog.csdn.net/weixin_42647783/article/details/81454821,谢谢
2018/4/1 16:41:06 22KB HOG特征 MATLAB 特征提取
1
《数值分析及其MATLAB实现》所附学习光盘├─光盘内容和使用阐明.doc28.50KB├─目录1.ppt949.50KB├─第一篇MATLAB快速入门│ ││ ├─第一章MATLAB简介│ │ ├─第一篇第一章.ppt408.50KB│ │ └─第一篇第一章│ │   ├─1.1.ppt565.00KB│ │   ├─1.2.ppt1.11MB│ │   ├─1.3.ppt874.50KB│ │   ├─1.4.ppt367.00KB│ │   └─1.5.ppt448.50KB│ ├─第一篇目录.ppt389.00KB│ ├─第三章MATLAB的符号解│ │ ├─第一篇第三章.ppt342.00KB│ │ └─第一篇第三章│ │   ├─3.1.ppt560.50KB│ │   └─3.2.ppt591.00KB│ └─第二章MATLAB的基本语法│   ├─第一篇第二章of.ppt324.50KB│   └─第一篇第二章│     ├─2.1.ppt614.50KB│     ├─2.2.ppt393.50KB│     ├─2.3.ppt450.00KB│     ├─2.4.ppt438.00KB│     └─2.5.ppt485.50KB├─第三篇数值分析程序│ ├─数值分析程序目录.doc81.00KB│ └─高教数值分析│   ├─第一章│   │ └─第一章误差与范数.doc288.50KB│   ├─第七章│   │ └─第七章函数逼近与曲线(面)拟合.doc309.50KB│   ├─第三章│   │ └─第三章解线性方程组的直接方法.doc373.50KB│   ├─第九章│   │ └─第九章数值积分.doc924.50KB│   ├─第二章│   │ └─第二章非线性方程(组)的数值解法.doc509.50KB│   ├─第五章│   │ └─第五章矩阵的特征值与特征向量的计算.doc538.50KB│   ├─第八章│   │ ├─~$章数值微分.doc162B│   │ └─第八章数值微分.doc343.00KB│   ├─第六章│   │ └─第六章函数的插值方法.doc793.50KB│   ├─第十章│   │ └─第十章常微分方程(组)求解.doc492.00KB│   └─第四章│     └─第四章解线性方程组的迭代法.doc149.00KB├─第二篇MATLAB快速入门│ ├─目录第二篇MATLAB快速入门.doc54.50KB│ └─第二篇MATLAB快速入门│   ├─第一章│   │ ├─目录第二篇第一章.doc32.00KB│   │ ├─第一章1.1.doc35.00KB│   │ ├─第一章1.2.doc801.00KB│   │ ├─第一章1.3.doc471.50KB│   │ ├─第一章1.4.doc176.00KB│   │ ├─第一章1.5.doc105.50KB│   │ └─第一章1.6.doc288.50KB│   ├─第三章│   │ ├─目录第二篇第三章.doc32.50KB│   │ ├─第三章3.1.doc73.50KB│   │ ├─第三章3.10.doc236.50KB│   │ ├─第三章3.11.doc150.50KB│   │ ├─第三章3.2.doc147.50KB│   │ ├─第三章3.3.doc95.00KB│   │ ├─第三章3.4.doc73.00KB│   │ ├─第三章3.5.doc42.50KB│   │ ├─第三章3.6.doc48.50KB│   │ ├─第三章3.7.doc102.50KB│   │ ├─第三章3.8.doc197.50KB│   │ └─第三章3.9.doc51.00KB│   ├─第二章│   │ ├─目录第二篇第二章.doc29.50KB│   │ ├─第二章2.1.doc55.00KB│   │ ├─第二章
2017/5/25 10:36:29 10.5MB 数值分析 MATLAB
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
关于CSP(共同空间模式)算法的代码。
共空间模式(CSP)是一种对两分类义务下的空域滤波特征提取算法,能够从多通道的脑机接口数据里面提取出每一类的空间分布成分。
公共空间模式算法的基本原理是利用矩阵的对角化,找到一组最优空间滤波器进行投影,使得两类信号的方差值差异最大化,从而得到具有较高区分度的特征向量。
2018/2/14 14:44:32 3KB CSP MI BCI
1
共 95 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡