机器学习全套课件和可运行python代码,机器学习新手入门必备!
2025/3/13 1:15:37 174.73MB 课件 机器学习
1
机器学习——支持向量机程序
2025/3/12 10:36:27 99.33MB 支持向量机
1
【LIBSVM】使用C++和LIBSVM实现机器学习+样本分类
2025/3/11 10:23:17 3.11MB SVM+LIBSVM
1
极限学习机(ExtremeLearningMachine,ELM)是一类基于前馈神经网络(feedforwardneuronnetwork)的机器学习算法,其主要特点是隐含层节点参数可以是随机或人为给定的且不需要调整,学习过程仅需计算输出权重。
ELM具有学习效率高和泛化能力强的优点,被广泛应用于分类、回归、聚类、特征学习等问题中。
2025/3/9 14:55:18 4.24MB ML 机器学习 人工智能 极限学习机
1
机器学习-强化学习-汤普森采样强化学习:汤普森采样:我们需要在有效的勘探与开发之间找到适当的平衡。
与UCB算法不同,汤普森采样算法是一种概率算法。
该算法具有代表我们对世界的感知以及我们认为这些机器中的每台机器的实际预期收益可能位于的分布。
与UCB相比,Thomas采样的优点之一是它可以适应延迟的反馈。
我将使用与UCB算法相同的数据集。
与UCB算法相比,汤普森采样算法产生了更好的结果(能够在尽可能少的回合中确定最佳广告)。
该算法的工作原理如下:在第n轮中,我们为每个广告i考虑两个数字:N1(n):-直到第n轮我获得奖励1的广告的次数,N0(n):-广告获得奖励​​0到第n轮的次数。
对于每个广告i,我们从以下分布中随机抽取:0i(n)=B(N1(n)+1,N0(n)+1)我们选择最高0i(n)的广告
2025/3/9 6:41:01 27KB JupyterNotebook
1
各种格式机器学习常用的二分类数据集,还有很多,文件大小限制上传不了,可以联系我
2025/3/9 5:28:27 19.9MB 二分类
1
这是从kaggle上下载的“givemesomecredit”信用比赛的原始数据,用于个人信用评估相关机器学习模型
2025/3/8 7:16:34 7.21MB 个人信用数据
1
北京交通大学机器学习期末考试复习重点不可多得的资料
2025/3/7 21:46:40 274.89MB BJTU 机器学习 期末重点
1
单元3最终项目恭喜你!您已经通过另一个高级模块完成了学习,现在您可以炫耀自己新发现的机器学习技能了!模块3剩下的就是完成最终项目!该项目该项目的主要目标是创建分类模型。
对于此项目,您可以选择:从策划清单中选择一个数据集选择由成员之一带入小组的预先批准的数据集选择数据集之后,您将使用到目前为止所学到的有关数据科学和机器学习的所有知识来获取数据集,进行预处理和探索,然后构建并解释可以回答所选问题的分类模型。
数据集您可以选择以下描述的数据集之一。
每种方法都有其自身的优缺点,当然还有其自身相关的业务问题和利益相关者。
可能需要充实您对受众或业务主张的理解,而不是在此处概述。
如果您选择这三个数据集之一,则无需得到教师的进一步批准。

请注意,此链接还指向“和“。
建立分类器,以根据有关汽车,汽车中的人,路况等的信息来预测车祸的主要原因,您可以想象您的听众是一
2025/3/3 21:29:52 998KB JupyterNotebook
1
《深入浅出Python机器学习》源程序,ipynb文件,jupyternotebook运行
2025/3/1 11:46:10 1.44MB python machine learning
1
共 647 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡