visualc++程序设计与应用教程课后操作题答案源代码清华大学出版社马石安魏文平编著
2025/1/15 13:14:58 1.84MB visual c++ 程序设计与应用教程 马石安
1
针对维吾尔文手写体文本中行分割问题,本文基于连通域大小将图像中文字分为三类,提出了自适应涂抹细化算法,对主体文本行进行定位;
并对第三类连通域中相邻两文本行间粘连的字符进行切割;
此外,利用重心范围内的邻域搜索算法,解决了剩余笔画的文本行归附问题。
实验结果表明,本文方法与常见的水平投影法,分段投影法,及涂抹方法相比具有更好的分割效果。
1
C#实现的数值编辑框控件TNumEditBox(V1.3),具有功能:1)设置ReadOnly时的背景颜色;
2)定义小数位长;
3)允许非负数;
4)支持Ctrl+V/Ctrl+C/Ctrl+X等快捷键操作;
5)支持鼠标上下文菜单操作(Paste/Copy/Cut)。
有关控件的说明请参见拙文:http://www.codeproject.com/KB/edit/TNumEditBox.aspx。
或者:http://blog.csdn.net/hulihui/archive/2008/09/17/2940491.aspx
2025/1/12 21:18:16 72KB C# Numeric Edit TextBox
1
热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。
本文设计了基于单片机的热电偶测温系统,该系统由供电部分、温度测量及A/D转换部分、单片机控制部分以及四位数码管显示部分组成。
该系统以STC89C52单片机为主控单元。
文中首先介绍了热电偶的测温原理及其特点等,另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C52单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。
2025/1/12 21:35:12 5.33MB 温度测量
1
针对一类大滞后时间系统的智能PID参数控制进行了讨论,按照系统误差及误差速度在一个响应振荡周期内不同时刻的不同性质进行分区,分析了不同时段内系统的误差信号内在规律,确立了相应的人工智能控制策略,分段按自适应律调整比例、微分参数.仿真结果表明,该文所介绍的方法在响应速度和平稳性方面都获得了优于文献Pen和Zervos的结果.
2025/1/11 19:21:52 299KB PID控制
1
MIL全称为MatroxImagingLibrary,由加拿大Matrox公司开发;
MIL软件包是一个独立于硬件的、含有多个标准模块或组件的32位图像库,可以对图像进行采集、处理、分析、显示和存取操作,其功能覆盖图像领域的所有方面,使用起来也相当简单和方便;
MIL-Lite是MIL的子集,含有MIL的部分模块,可以进行图像的采集、显示、存取操作,还可以在图像上进行图形操作及LUT变换等;
MIL/MIL-Lite支持Matrox公司所有采集卡,如果应用程序采用其它公司的采集卡,则不能使用MIL/MIL-Lite的采集功能,但应用程序可以使用MIL/MIL-Lite的其它功能。
————————————————版权声明:本文为CSDN博主「文大侠」的原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wenzhou1219/article/details/7530317
1
用算法程序集(C语言描述)(第五版)+源代码第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预报校正法10.11全区间积分的哈
2025/1/9 6:30:24 156.11MB 常用算法程序集 C语言 C++ 第五版
1
自2016年3月AlphaGo战胜世界围棋冠军李世石,人工智能也越来越成为社会关注的焦点,伴随着人工智能应用的普及以及各界人士对人工智能未来的猜测,进而引发的人工智能威胁论也被社会各界人士所讨论。
该文首先介绍了人工智能的发展历程,继而剖析了人工智能的核心部分情感计算机制以及其与人类的关系进行了分析,接着介绍了目前常用的机器学习部分相关理论,最后分析了对人工智能的思考这五个方面进行了总结综述。
2025/1/8 7:49:39 132KB 人工智能
1
区块链是与当下与VR虚拟现实等比肩的热门技术之一。
区块链是加密货币背后的技术,与基础语言或平台等差别较大,它本身不是新技术,类似Ajax,可以说它是一种技术架构,所以我们从架构设计的角度谈谈区块链的技术实现。
无论你擅长什么编程语言,都能够参考这种设计去实现一款区块链产品。
与此同时,梳理与之相关的知识图谱和体系,帮助大家系统的去学习研究。
文末,推荐了一些精选内容,供大家阅读。
区块链来自于比特币等加密货币的实现,目前这项技术已经逐步运用在各个领域。
我们可以使用谷歌地球的例子做类比:ajax不是新技术,但组合后成就了产品谷歌地球。
区块链与加密解密技术、P2P网络等组合在一起,诞生了比特币。
技术人员,
1
本文详细记录了在Ubuntu12.04上安装OpenStack的过程,全部过程采用脚本执行,文中有详细的脚本代码。
熟练的话,10分钟搞定!
2025/1/6 2:32:47 601KB OpenStack Ubuntu 安装
1
共 868 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡