基于Labview的虚拟示波器设计1.技术指标 能实现2个波形的分别输入及比较,可以简单的控制示波器输出的波形,例如可以对波形进行幅度和频率的调制,可以控制波形上下移动以及对波形的峰峰值进行测量。
2.设计方案本设计采用LabVIEW软件进行制作,LabVIEW程序又称虚拟仪器,即VI,其外观和操作类似于真实的物理仪器(如示波器和万用表)。
LabVIEW拥有一整套工具用于采集、分析、显示和存储数据,以及解决用户编写代码过程中可能出现的问题。
LabVIEW提供众多输入控件和显示控件用于创建用户界面,即前面板。
输入控件指旋钮、按钮、转盘等输入装置。
显示控件指图形、指示灯等输出显示装置。
创建用户界面后,可添加各种VI和结构作为代码,从而控制前面板对象。
代码在程序框图中编写。
LabVIEW不仅可与数据采集、视觉、运动控制设备等硬件进行通信,还可与GPIB、PXI、VXI、RS232以及RS485等仪器通信。
在Labview软件中可以找到制作虚拟示波器的各种元件,通过控制信号的幅度和频率可以改变示波器中信号的幅值和频率,加上中继器和开关可以控制2个通道波形的显示以
2024/12/2 6:33:56 272KB labview
1
SuperIO的特点:1)支持二次开发,快速构建自己的通讯数据采集平台软件2)快速构建设备驱动、协议驱动、命令缓冲、自定义参数和实时数据3)快速二次开发图形显示、数据输出、服务驱动4)一个设备驱动,同时支持串口(COM)和网络(TCPServer/TcpClient)通讯机制,可以自由切换5)内置协议驱动,可以把第三方协议转换成自定义的协议6)内置设备命令缓冲器,可以设置命令发送的优先级别7)以插件的方式挂载设备驱动、显示、输出、服务模块等8)以服务驱动方式(IAppService)二次开发OPC服务、4-20mA输出、LED大屏显示、短信服务等9)快速开发、运行稳定、扩展性强大10)适用工业上位机软件,以及系统集成中采集远程设备数据http://www.bmpj.net
2024/12/2 2:19:25 51.9MB SuperIO 串口 网络 工控
1
基于LabVIEW实时数据采集系统的设计
2024/11/28 14:31:03 208KB 数据采集
1
labview数据采集利用研华采集卡进行的数据采集
2024/11/19 14:52:47 19KB labview 数据采集
1
 目前胜利油田滨南采油厂原油盘库系统的自动化程度较低。
为大力提高其自动化水平,本文根据该采油厂各联合站分散采集、集中监视的特点,设计了基于RS-485总线和主从单片机结构的数据采集子系统方案。
由位于监控室的主单片机作为中枢,通过RS-485总线采集各从单片机收集到的原油参数并通过串口上传到上位机中。
利用上位机软件配合Proteus软件和Keil软件对整个子系统进行了仿真和测试,从而验证了其可行性。
1
本书系统的介绍了分布式流域水文模型的理论、方法和实例。
包括:水文循环中的各个物理过程的数学模拟;
数字高程模型;
流域地貌指数的提取与分析;
数字河网的提取;
基于数字高程模型的流域等流时线的推求;
TOPMODEL;
半分布式月水量平衡模型;
TOPKAPI模型;
MIKESHE模型,SHETRAN模型;
DHSVM模型;
ARC/EGMO模型。
本书适合于水利、地理、气象、国土资源等领域的广大科技工作者、工程技术人员参考使用,也可作为高行装院校高年级本科生和研究生的教学参考书。
目录前言第一章绪论第一节分布式流域水文模型第二节目的和全书结构第二章水文时空变化过程模拟基础第一节降雨空间分析方法第二节土壤水运动过程第三节下渗第四节蒸发与散发第五节融雪第六节流域汇流单位线第七节河道流量演算第八节流域分布式汇流演算第三章数字高程模型与地貌指数第一节数字高程模型的数据来源第二节数据采集方法第三节流域地貌指数提取第四节流域地貌指数的水文物理意义第五节温度指数的空间分布分析第六节河网水的生成第四章TOPMODEL第一节TOPMODEL第二节流域降雨-径流关系模拟应用第三节土壤导水率与缺水深函数关系研究第四节结论与讨论第五章基于DEM的流域等流时线和分布式水文模型第一节基于DEM的流域等流时线第二节基于DEM的分布式水文模型第六章半分布式月水量平稀模型第一节月水量平衡模型及其比较研究第二节两参数月水量平衡模型第三节半分布式月水量平衡模型第四节气侯变化对水文水资源的影响评价第七章TOPKAPI模型第一节概述第二节分布式OPKAPI模型第三节集总式OPKAPI模型第四节应用举例第五节结论和展望第八章MIKESHE模型第一节概述第二节水流运动模块第三节平移扩散模块第四节MIKESHE应用情况第五节存在的问題和研究展望第九章SHETRAN模型第一节概述第二节研究进展和应用第三节模型研究展望第十章DHSVM模型第一节概述第二节模型物理过程及数学公式第三节模型评价及应用第四节结论第十一章ARC/EGMO模型第一节概述第二节ARC/EGMO的结构设计第三节空间分解和参数估计第四节模型物理过程及数学公式第五节ARC/EGMO应用的数据处理第六节SAALE流域应用实例第七节结论和展望
2024/11/11 2:21:09 26.72MB 分布式 流域 水文模型 熊立华
1
本文根据研究课题实用化被动毫米波雷达,结合项目背景和需求,设计开发了基于PCI总线的高速数据采集系统,该数据卡以FPGA为核心器件,其它外围接口的控制逻辑、芯片控制逻辑均由FPGA实现,与上位机之间的通信通过PCI总线完成。
FPGA的内部逻辑设计和算法实现是本文讨论的重点。
大量外围芯片功能集中在单个FPGA芯片中,大大提高了系统的集成度和可靠性。
2024/11/10 18:16:32 1.5MB PCI总线 高速数据采集系统
1
本次上传的是之前的改良版本,界面内容更加新颖有趣。
曾经在省级技能大赛中凭借完美的界面设计获得过一等奖。
关于作品:这是一个备忘录功能的小应用。
可以采用文字、语音和视频三种方式来记录您在生活中的活动,可以通过录音、录像的数据采集来记录生活中的点点滴滴。
整个应用包含Android开发中的SQLite,MediaPlayer,SharePreference,SurfaceView等等一些知识。
2024/11/10 5:40:05 20.57MB Android 备忘录 视频录制 音频录制
1
通过上位机显示采集的温度湿度光照度土壤湿度等信息,适用于大棚管理
13KB 6d
1
数据采集滤波、自适应滤波概念、最佳滤波、最小均方算法、最小二乘算法、自适应噪声对消
2024/11/5 19:31:13 9.35MB 自适应滤波
1
共 403 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡