由于数据在各个科学领域的增值,新兴的数据分析技术正在以难以置信的速度发展。
大数据集目前通常在科学上用于激励发展数学技术和计算方法,用来帮助分析、解释和释疑数据在科学应用环境中的意义。
本书的特定目的是集成标准的科学计算方法和数据分析技术。
通过这种方式,本书还引入了统计学、时频分析和降维处理等方面的重要思想。
全书共分四部分(26章),前三部分详细讲解各类数学运算与分析方法,第四部分重点讲解如何应用数学方法进行动态复杂系统分析与大数据处理。
其中,第一部分讨论数学、矩阵分析和概率论的主要数据计算方法及结果可视化;
第二部分讨论微分方程计算与建模;
第三部分讨论各种数值分析与计算方法并进行比较,引入动态复杂系统概念;
第四部分讲解复杂系统与大数据分析方法和处理模型的建立。
2024/5/29 2:40:31 175.06MB 数据驱动 科学计算 复杂系统 大数据
1
北京数码大方科技股份有限公司(CAXA)是中国领先的工业软件和服务公司,是中国最大的CAD和PLM软件供应商,是中国工业云的倡导者和领跑者.是学习者入门二维软件首选。
备注:仅供学习交流,不得从事利用该资源从事其它任何违反相关规定的行为!
2024/5/28 20:01:35 73B CAXA 二维软件 环境变量设置
1
维尔图库贝该项目不再开发。
我出于历史的考虑将其保留在网上,但是您不应该期望它会起作用,并且绝对不要期望其支持,修复或功能。
Virtuakube设置了虚拟Kubernetes集群进行测试。
与minikube或云集群相比,它具有几个优点:支持任意数量的节点,仅受系统RAM限制。
可以在没有root特权的情况下运行(某种程度上-当前仍然需要docker特权才能构建映像)。
无需互联网即可运行。
因为它模拟完整的以太网LAN,所以可以用来测试联网的系统。
初始设置后,可以在不到10秒钟的时间内重新创建复杂的VM和网络拓扑,非常适合运行大量的单元测试。
这是一个非常年轻的系统,并且是为测试的需求而,但是对于使用Kubernetes和测试场景,它似乎通常都非常有用。
但是,到目前为止,您应该期望API会经常更改。
欢迎用户和贡献者,但是请注意,您正在使用的是非常年轻的软件。
60KB Go
1
本文在VS2012开发平台上面配置PCL1.7.2+KinectV2.0SDK+opencv2.4.9,使用最新的KinectV2.0传感器设备获取场景中的深度图像和彩色图像,并将二者转换保存为PCL数据库所使用的PCD点云数据格式,然后借助编程算法,编写程序将保存的点云PCD格式数据,成功的保存到电脑Dist里面。
本程序所使用的配件较多,自己起步一点点摸索的话,极费事、极费时间,这里将其拿出来供大家直接使用,也算是为致力于三维点云图像处理和PCL+KinectV2.0的同仁志士加了点催化剂,给予一点帮助吧。
让三维点云的获取更加方便,KinectV2.0使用范围更广阔吧。
2024/5/26 13:49:48 25.53MB 点云,PCD
1
收到一些国内外朋友的来信,咨询关于容积卡尔曼滤波的问题(CKF),大家比较疑惑的应该就是generator或G-orbit的概念。
考虑到工作以后,重心必然转移,不可能再像现在这样详细的回答所有人的问题,更不可能再帮大家改论文、写(或改)代码了,请各位谅解!在此,上传一个CKF和五阶CKF用于目标跟踪的示例代码,代码中包含详细的注释,希望对大家以后的学习和研究有所帮助!此代码利用C++对五阶CKF的第二G-轨迹进行了封装(Perms.exe),能理解最好,如果无法理解,也无须深究其具体构造方法!可执行文件底层是用字符串+递归算法实现的,理论上可以应用于任意维模型。
但考虑到递归算法可能存在的栈溢出,重复压栈出栈带来的时间消耗等问题,我们利用矩阵的稀疏性和群的完全对称性,并通过分次调用,来尽可能减少栈的深度,提高计算速度。
容积点一次生成后,可以一直使用,通过对50维G-轨迹的生成速度(CoreT6600@2.2GHz)进行测试,包含数据读写在内的速度约为1.5秒,速度尚可。
而目前为止,本人尚未遇到达到甚至超过50维的系统,因此,暂时不作算法层面的优化。
注意:Perms.exe可以用于任意维模型,将可执行文件复制至工作目录下,调用时选择N/n,并输入你的模型维数,即可生成所需的第二G-轨迹。
如果无法理解相关的概念,请参考示例代码,并记住如何使用即可~~~相关理论基础及所用模型,请参考以下文献:References(youmayciteoneofthearticlesinyourpaper):[1]X.C.Zhang,C.J.Guo,"CubatureKalmanfilters:Derivationandextension,"ChinsesPhysicsB,vol.22,no.12,128401,DOI:10.1088/1674-1056/22/12/128401[2]X.C.Zhang,Y.L.Teng,"AnewderivationofthecubatureKalmanfilters,"AsianJournalofControl,DOI:10.1002/asjc.926[3]X.C.Zhang,"Cubatureinformationfiltersusinghigh-degreeandembeddedcubaturerules,"Circuits,Systems,andSignalProcessing,vol.33,no.6,pp.1799-1818,DOI:10.1007/s00034-013-9730-0
2024/5/26 2:39:13 239KB CKF 五阶CKF 目标跟踪
1
WPF调用摄像头识别二维码的代码DEMO引用了两个dll1、WPFMediaKit.dll调用摄像头2、zxing.dll识别条码
2024/5/26 1:10:21 1.06MB WPF
1
html5调用摄像头扫描二维码,目录下有例子,一看秒懂
2024/5/25 9:08:31 1.57MB 摄像头
1
可以读取三维点云,生成三角网格,并绘制三维图像.
2024/5/24 12:42:19 4.62MB 三角化 delaunary matlab
1
js链接生成二维码并实现保存二维码到本地
2024/5/24 9:14:52 45KB html5 javascript web开发
1
用于三维重建方面的三维点云数据文件ply文件格式包含多个模型
2024/5/23 21:57:10 233.99MB 三维模型 ply文件 点云数据
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡