利用RBF网络(隐含层神经单元个数和学习率等参数可在内部修改,不作为输入参数)学习和训练,并对输入的测试样本做出响应。
输入和输出维数可以多维。
实际运行,逼近y=sin(t)函数效果不错。
2023/11/26 7:05:55 2KB RBF;MATLAB
1
基于RBF的自适应控制matlab仿真,基于simulink实现,神经网络对不确定性进行估计
2023/11/26 3:58:18 8KB matlab
1
利用java实现bp神经网络,给定了UCI数据库的疝气病证预测病马数据,使用训练集训练BP神经网络并预测测试集的标签,错误率控制在30%以下。
2023/11/26 1:03:26 5KB java bp
1
该文件主要包含了两个利用Matlab做的BP算法,主要用来实现预测,该文件中包含两个网络,一个是普通BP神经网络,一个为双隐含层BP神经网络。
2023/11/25 4:38:11 49KB BP算法
1
用于神经网络,深度学习方面的数据集。
原网址因为Thedatasetisnolongeravailableduetopermissionrestrictions.
2023/11/25 1:24:01 22KB 深度学习 deep learning
1
神经网络模型预测控制器
2023/11/24 14:20:55 4KB 模型预测
1
不用MATLAB的工具箱写的bp神经网络代码,可以深入理解bp神经网络的权值与阈值。
2023/11/23 17:04:39 6KB 不使用工具箱
1
里面有附加动量法反向传播网络训练程序,自适应学习及弹性bp算法等,适用于神经网络控制入门.
1
基于matlab和神经网络的手写字母识别
2023/11/22 6:16:04 152KB matlab
1
试图将卷积神经网络的优势与支持向量机的稳定性相结合,利用训练好的卷积层与池化层提取图片的特征,放入支持向量机中进行训练,进行分类操作。
其意义在于利用SVM来替换卷积网络中的全连接层,经实验验证,效果会提升2%-3%,这是一个很可观的提升,并且具备着广泛的意义,在各项其他环境下都能起到不错的效果。
2023/11/20 12:03:25 15MB cnn svm
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡