这个软件以及代码是关于MFC实现运动目标检测的,由于程序比较大,代码比较多,需要认真思考
2024/12/29 13:53:52 13.55MB opencv MFC
1
讲述labview+IMAQ处理图像的资料,包括图像采集,图像传输,图像处理,图像分析一套完整的流程,是比较全的IMAQ资料,你值得拥有(注:是英文版)
2024/12/29 12:39:40 19.17MB labview IMAQ
1
在精密测量、自动化装配和机器人等诸多领域,往往需要对圆形器件或图标进行识别和定位,而目前传统的检测方法是Hough变换,计算复杂,对资源需求大,且不利于实时控制.本文利用圆形几何对称的性质,采用基于颜色分类方法,提出一种非Hough变换的圆的检测方法,从而达到对彩色图像中圆形目标进行快速识别的目的.设计了算法的流程,编制了相应的圆识别程序,通过对足球机器人定位的验证,表明该算法具有运算速度快及对畸变的圆形目标适应性好等优点,为图像处理中圆目标的快速识别与定位提供了一种借鉴.
2024/12/29 11:46:23 856KB 非Hough变换; 图像识别;
1
小波变换的图像处理%MATLAB2维小波变换经典程序%FWT_DB.M;%此示意程序用DWT实现二维小波变换%编程时间2004-4-10,编程人沙威%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clear;clc;T=256;%图像维数SUB_T=T/2;%子图维数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1.调原始图像矩阵loadwbarb;%下载图像f=X;%原始图像%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2.进行二维小波分解l=wfilters('db10','l');%db10(消失矩为10)低通分解滤波器冲击响应(长度为20)L=T-length(l);l_zeros=[l,zeros(1,L)];%矩阵行数与输入图像一致,为2的整数幂h=wfilters('db10','h');%db10(消失矩为10)高通分解滤波器冲击响应(长度为20)h_zeros=[h,zeros(1,L)];%矩阵行数与输入图像一致,为2的整数幂fori=1:T;%列变换row(1:SUB_T,i)=dyaddown(ifft(fft(l_zeros).*fft(f(:,i)'))).';%圆周卷积FFTrow(SUB_T+1:T,i)=dyaddown(ifft(fft(h_zeros).*fft(f(:,i)'))).';%圆周卷积FFTend;forj=1:T;%行变换line(j,1:SUB_T)=dyaddown(ifft(fft(l_zeros).*fft(row(j,:))));%圆周卷积FFTline(j,SUB_T+1:T)=dyaddown(ifft(fft(h_zeros).*fft(row(j,:))));%圆周卷积FFTend;decompose_pic=line;%分解矩阵%图像分为四块lt_pic=decompose_pic(1:SUB_T,1:SUB_T);%在矩阵左上方为低频分量--fi(x)*fi(y)rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T);%矩阵右上为--fi(x)*psi(y)lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T);%矩阵左下为--psi(x)*fi(y)rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T);%右下方为高频分量--psi(x)*psi(y)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.分解结果显示figure(1);colormap(map);subplot(2,1,1);image(f);%原始图像title('originalpic');subplot(2,1,2);image(abs(decompose_pic));%分解后图像title('decomposedpic');figure(2);colormap(map);subplot(2,2,1);image(abs(lt_pic));%左上方为低频分量--fi(x)*fi(y)title('\Phi(x)*\Phi(y)');subplot(2,2,2);image(abs(rt_pic));%矩阵右上为--fi(x)*psi(y)title('\Phi(x)*\Psi(y)');subplot(2,2,3);image(abs(lb_pic));%矩阵左下为--psi(x)*fi(y)title('\Psi(x)*\Phi(y)');subplot(2,2,4);image(abs(rb_pic));%右下方为高频分量--psi(x)*psi(y)title('\Psi(x)*\Psi(y)');%%%%%%%
2024/12/29 6:42:54 2KB 小波变换 matlab
1
基于时频重排多分量辐射源信号分析研究研究时频分析,时频图像,雷达信号分选的请看
2024/12/29 2:39:44 510KB 时频重排
1
对二值图像黑白跳变点的坐标进行提取,利用两for循环先一列一列的扫描,最后对提取出来的数据进行遍历。
找出y坐标重复的点分别用后面的坐标覆盖掉。
2024/12/28 18:22:32 2KB 坐标提取
1
模板匹配与车牌识别是以计算机数字图像处理,模式识别等技术为基础,对图形进行预处理及边缘检测等过程来实现对车牌区域的定位,然后对车牌区域进行图像裁剪、归一化、字符分割及保存,最后将分割得到的字符图像与模板进行匹配识别,从而输出匹配结果。
代码在matlab可以直接运行。
2024/12/28 11:13:18 1.91MB matlab
1
 提出了一种基于Surendra改进的运动目标检测算法,通过对背景更新系数的改进,获取稳定准确的背景,再将背景帧与含运动区域的图像帧用差分运算获得运动目标图像。
实验结果表明,该算法能够较快反应环境的变化,准确地获得背景图像,提高运动目标检测的准确性。
1
这是opencvsvm图像分类的整个工程代码,在VS2010下打开即可。
整个工程文件以及我的所有训练的图片存放在这里,需要的可以下载,自己在找训练图片写代码花了很多时间,下载完后自行解压,训练图片和测试图片可以从这免费下载http://download.csdn.net/detail/always2015/8944959,projectdata文件夹直接放在D盘就行,里面存放训练的图片和待测试图片,以及训练过程中生成的中间文件,现在这个下载object_classfication_end则是工程文件,我用的是vs2010打开即可,下面工程里有几个要注意的地方:1、在这个模块中使用到了c++的boost库,但是在这里有一个版本的限制。
这个模块的代码只能在boost版本1.46以上使用,这个版本以下的就不能用了,直接运行就会出错,这是最需要注意的。
因为在1.46版本以上中对比CsSVM这个类一些成员函数做了一些私有化的修改,所以在使用该类初始化对象时候需要注意。
2、我的模块所使用到的函数和产生的中间结果都是在一个categorizer类中声明的,由于不同的执行阶段中间结果有很多个,例如:训练图片聚类后所得到单词表矩阵,svm分类器的训练的结果等,中间结果的产生是相当耗时的,所以在刚开始就考虑到第一次运行时候把他以文件XML的格式保存下来,下次使用到的时候在读取。
将一个矩阵存入文本的时候可以直接用输出流的方式将一个矩阵存入,但是读取时候如果用输入流直接一个矩阵变量的形式读取,那就肯定报错,因为输入流不支持直接对矩阵的操作,所以这时候只能对矩阵的元素一个一个进行读取了。
3、在测试的时候,如果输入的图片太小,或者全为黑色,当经过特征提取和单词构造完成使用svm进行分类时候会出现错误。
经过调试代码,发现上述图片在生成该图片的单词的时候所得到的单词矩阵会是一个空矩阵,即该矩阵的行列数都为0,所以在使用svm分类器时候就出错。
所以在使用每个输入图片的单词矩阵的时候先做一个判断,如果该矩阵行列数都为0,那么该图片直接跳过。
2024/12/26 7:01:54 37.36MB SVM图像分类
1
多点触控缩放图像~解决网上某些demo的问题:图像缩小后反弹导致图像变形、缩放功能和onClick、onLongClick事件混乱等
2024/12/25 17:06:23 1.45MB 缩放 图片 多点触控 android
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡