光伏电池的输出功率取决于外界环境(温度和光照条件)和负载状况,需采用最大功率点跟踪(MPPT)电路,才能使光伏电池始终输出最大功率,从而充分发挥光伏器件的光电转换效能。
在比较了常用光伏发电系统控制的优缺点后,依据MPPT控制算法的基本工作原理,主电路采用双并联Boost电路,具有电压提升功能,并且能够提高DC-DC环节的额定功率和减小直流母线电压的纹波。
针对传统扰动观察法存在的振荡和误判问题,提出了一种新型的基于双并联Boost电路的改进扰动观察法最大功率跟踪策略。
在Matlab/Simulink下进行了建模与仿真,仿真结果表明,当外界环境发生变化时,系统能快速准确跟踪此变化,避免算法误判现象的发生,通过改变当前的负载阻抗,使之与光伏电池的输出阻抗等值相匹配来满足最大功率输出的要求,使系统始终工作在最大功率点处,并且在最大功率点处具有很好的稳态性能。
最后通过实验验证了该算法的有效性。
1
本论文主要阐述了中型企业的局域网建设问题,本着办公自动化和资源共享的原则将企业的一百台计算机组织成为一个小型的办公局域网。
本方案主要采用星形与树型相结合的混合型拓扑结构对网络进行构建,将本企业的一百台计算机分为五组,每组二十台,采用多台交换机将五组计算机连接起来组成内部局域网。
并使用拨号上网的方式进行网络连接。
2023/10/4 10:36:22 1.36MB 企业 局域网,办公自动化
1
SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。
空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。
SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
2023/10/4 10:39:03 40KB 永磁同步电机 SVPWM
1
浙大四版高清版(教材+课后习题详解),并包涵ppt课件,每个章节都有相对应的习题测验,是概率论与数理统计初学者的首选。
2023/10/4 1:57:10 92.54MB 概率论 数理统计 浙大四版
1
提出了将近红外传感与AVR单片机控制技术相结合来测量土壤含水量的设计方法。
该方法具有非接触式、功耗小、便携、速度快等特点。
2023/10/3 4:47:34 220KB 近红外 AVR 含水量 光纤传感器
1
本教程是为电脑游戏制作的发烧友准备的。
因为Linux的普及以及不受$M的牵制,SDL在过去的几年中,成为了跨平台开发PC游戏的首选。
即使是在Windows平台下,SDL有具有自身的优势。
与MFC使用不成熟的C++外表伪封装的win32api以及一家独唱推崇的COM风格和.net相比较,SDL是更纯粹的C风格。
无论你是喜欢纯C还是OOP的C++,你都可以按照你自己喜欢的方式对SDL进行再次封装,只要你自己愿意,可以让自己的程序更接近C/C++的标准风格,让代码更加优美也更加容易阅读。
2023/10/2 17:15:25 710KB SDL 入门 教程 中文
1
Green函数的Matlab模拟,完整源程序和相对应论文(Paul等人发表)
2023/10/2 17:33:57 1.16MB Green函数 Matlab 插值
1
生成3个频率四步移相共12幅投影光栅,并通过循环进行存储。
2023/10/2 11:26:17 779B matlab代码
1
《现代整流器技术:有源功率因数校正技术》系统地介绍了功率因数校正电路的原理和应用技术。
书中详细介绍了单相功率因数校正电路原理及控制方法(包括CCM单相Boost型功率因数校正电路、CRM单相Boost型功率因数校正电路、交错并联功率因数校正电路、无桥型功率因数校正电路、低频开关功率因数校正电路)和三相功率因数校正电路原理及控制(重点介绍了电压型和电流型三相功率因数校正电路数学模型、锁相、PWM、控制技术)。
此外,《现代整流器技术:有源功率因数校正技术》还介绍了软开关功率因数校正电路的原理,包括单相、三相有源箝位零电压开关功率因数校正电路。
  《现代整流器技术:有源功率因数校正技术》可作为电气工程与自动化专业、电子信息工程专业的高年级本科生、电气工程学科的研究生参考书,也可作为从事开关电源、变频器、UPS、工业电源等电力电子装置开发、设计工程技术人员的参考书
2023/10/2 2:25:26 13.68MB 有源功率因数
1
LLC拓扑的移相控制simulink控制模型
2023/10/1 15:29:34 103KB 仿真
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡