文章的第二章,从三维激光扫描数据的特点出发,引见了数据处理的基本程,重点引见了预处理的内容:其一,引见了使用FAROLaserScanner880的套软件FAROScene和商业软件GeomagicStudio对点云数据进行去噪的方法步骤;
其二,引见了多站数据配准的基本理论和几种重要算法,包括:有靶控制的点云配准方法、ICP算法和四元数法,并归纳了这几种方法的特点。
第三章主要研究了基于塑像三维点云数据进行模型重建的技术。
针对塑像面不规则的特点,对塑像点云的建模选择了逐点插入法构建空间三维网格,细引见了该算法和流程;
针对三维激光扫描数据量大的特点,提出了基于构不均匀网格对点云数据进行压缩的算法,以减少数据量并达到保留扫描对象特征的目的。
第四章以贝多芬的头像为扫描对象,设计合理的实验方案来获取塑像点云据,并对数据进行去噪、配准和网格化处理,实验了本文所述的三维建模的程;
此外,对所获数据进行了压缩,取得了不错的效果。
2019/6/18 3:01:34 10.12MB 点云数据 三维重建
1
FP-tree是一个数据库里跟产生频繁集有关的信息的紧缩表示。
该实现基于Windows平台,编程工具是VisualC++6.0,许多地方还用到了C++的标准模板库。
另外还附带c#和matlab版本
2018/8/26 12:51:28 2.92MB fpgrowth c++ c# matlab
1
从2020年初就开始发现身边不少人已经“习惯性”的在微信搜一搜中进行相关信息的查询,而且渐渐的不习惯去用百度、360、搜狗等搜索引擎进行搜索了,究其缘由还是微信搜一搜的各方面优势的凸显。
“微信搜一搜”是微信自带的搜索功能,它有着和百度搜索引擎不一样的算法。
在搜索的结果上侧重于微信官方的公众号、小程序、朋友圈等内容;
其次搜索频道包含“百科”、“表情”、“视频号”、“微信指数”等更为符合网民搜索需求。
2020/6/24 23:07:54 729KB 微信营销 微信推广 微信搜一搜
1
从2020年初就开始发现身边不少人已经“习惯性”的在微信搜一搜中进行相关信息的查询,而且渐渐的不习惯去用百度、360、搜狗等搜索引擎进行搜索了,究其缘由还是微信搜一搜的各方面优势的凸显。
“微信搜一搜”是微信自带的搜索功能,它有着和百度搜索引擎不一样的算法。
在搜索的结果上侧重于微信官方的公众号、小程序、朋友圈等内容;
其次搜索频道包含“百科”、“表情”、“视频号”、“微信指数”等更为符合网民搜索需求。
2020/6/24 23:07:54 729KB 微信营销 微信推广 微信搜一搜
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
词法分析器:1)定义目标语言的可用符号表和构词规则;
2)依次读入源程序符号,对源程序进行单词切分和识别,直到源程序结束;
3)对正确的单词,按照它的种别以的方式保存在符号表中;
4)对不正确的单词,做出错误处理。
算符优先算法:若输入文法:E->E+T|TT->T*F|FF->(E)|i根据算符优先分析法,将赋值语句进行语法语义分析,翻译成等价的一组基本操作,每一基本操作用四元式表示
1
1.下列说法正确的是()A、扩散现象说明分子永不停息地做无规则的运动B、只要气体之间才能扩散C、固体之间不能发生扩散D、扩散现象表明分子之间不存在作用力2.在0°C的房间内,放在地面上的铅球:()A、具有动能B、没有机械能C、具有内能D、没有内能3、下列事例中,把机械能转化成物体内能的是()A、用酒精灯加热烧杯里的水B、用电饭锅做饭C、点燃的爆竹升到空中D、用打气筒打气,筒壁会发热4、下列关于物体内能的说法中正确的是()A.物体运动速度越大,内能越大B.静止的物体没有动能,但有内能C.内能和温度有关,所以0℃的水没有内能D.温度高的物体一定比温度低的物体内能大
1
什么是OCHamcrest?OCHamcrest是一个Objective-C模块,提供:一个“匹配器”对象库,用于声明规则以检查给定对象能否与那些规则匹配。
用于编写自己的匹配器的框架。
匹配器可用于多种目的,例如UI验证。
但是它们最常用于编写表达性强且灵活的单元测试。
我的第一个OCHamcrest测试我们将从编写一个非常简单的Xcode单元测试开始,但是不使用XCTest的XCTAssertEqualObjects函数,而是使用OCHamcrest的assertThat构造和预定义的匹配器:@importOCHamcrest;@importXCTest;@int
1
原始的小世界网络论文中概念的VC++程序完成,先初始化为规则网络,然后重新连接顶点,重新连接后,记录下没个被重新连接的元素
2016/6/7 8:48:19 2.35MB 小世界网络
1
共 799 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡