引见光纤的概念及其种类,光纤损耗和传输优点,并应用matlab软件数值模拟了单模光纤模场的分布特性,结论为光纤器件的制作提供参考
2019/11/2 3:55:25 328KB LabVIEW
1
MC9S12系列单片机相关文档、用户手册,器件说明,详细引见MC9S12系列单片机的内部结构,工作原理和管脚功能等,仅供学习参考。
2021/5/23 10:52:14 3.79MB MC9S12
1
有代码原理图和说明。
本设计描述了一款嵌入式数字示波器,在硬件上采用了32位微处理器STM32和高速A/D转换器ADS830等器件,软件上搭载上µC/OS-II实时操作系统,简化编程,提高系统的效率和稳定性。
输入信号从系统的无源探头接入,先经过的是AC/DC耦合电路,然后经过信号调理电路,被调理后的信号接着由A/D转换器转变成数字信号,再经过高速缓存器FIFO,信号数据即被传送到微处理器STM32中,由微处理器STM32完成对信号数据的处理,最初把波形还原到液晶上,并显示该信号的频率、电压等技术指标,以供用户参考。
2020/1/4 4:01:29 4.33MB 示波器 STM32 uCOS
1
近年来,在数字信号处理领域有着绝对优势的DSP技术得到了迅速发展。
DSP器件分为两大类:一类是专门用于FFT、FIR滤波、卷积等运算的芯片,称为公用DSP器件;
另一类是可以通过编程完成各种用户要求的信息处理任务的芯片,称为通用数字信号处理器件。
本次设计基于TMS320VC5402芯片设计并实现了一种语音录音、语音编码、语音解码、语音处理和回放的系统。
通过软件和硬件结合对该系统进行设计,使本次设计的语音处理系统具有强大的数据处理能力并配有灵活的接口电路,可以作为一种语音信号处理算法研究和实时实现的通用平台,对语音编码在DSP上的实时实现进行了简单的研究,从而掌握了算法移植的一般流程,为能够在高速DSP硬件平台设计及系统应用开发方面取得成功奠定基础。
2020/11/12 8:52:54 556KB 语言处理 DSP FFT FIR
1
全国大学生电子设计大赛培训教程(全),全国大学生电子设计竞赛训练教程目录第1章电子设计竞赛题目与分析1.1全国大学生电子设计竞赛简介1.2全国大学生电子设计竞赛命题原则及要求1.2.1命题范围1.2.2题目要求1.2.3题目类型1.2.4命题格式1.2.5征题办法1.3电子设计竞赛的题目分析1.3.1电源类题目分析1.3.2信号源类题目分析1.3.3无线电类题目分析1.3.4放大器类题目分析1.3.5仪器仪表类题目分析1.3.6数据采集与处理类题目分析1.3.7控制类题目分析第2章电子设计竞赛基础训练2.1电子元器件的识别2.1.1电阻器2.1.2电位器2.1.3电容器2.1.4电感器2.1.5半导体分立器件2.1.6半导体集成电路2.1.7表面贴装元件2.2装配工具及方法2.2.1装配工具2.2.2焊接材料2.2.3焊接工艺和方法2.3印制电路板设计与制作2.3.1印制电路板设计2.3.2印制电路板的制作第三章单元电路训练3.1集成直流稳压电源的设计3.1.1直流稳压电源的基本原理3.1.2三端固定式正压稳压器3.1.3三端固定式负压稳压器3.1.4三端可调式稳压器3.1.5正、负输出稳压电源3.1.6斩波调压电源电路3.1.7精密稳压电源电路3.1.8DC-DC电源电压3.1.9受控稳压电源3.1.10LCD显示器用负压电源3.2运算放大器电路3.2.1运算放大器基本特性3.2.2基本运放应用电路3.2.3测量放大电路3.3信号产生电路3.3.1分立模拟电路构成矩形波产生电路3.3.2正弦波产生电路3.3.3三角波产生电路3.3.4多种信号发生电路3.4信号处理电路3.4.1有源滤波电路3.4.2电压/频率、频率/电压变换电路3.4.3电流-电压变换电路3.5声音报警电路3.5.1分立元件制作的声音报警电路3.5.2与单片机接口的声音报警电路与程序3.5.3与可编程逻辑器件接口的声音报警电路与程序3.6传感器及其应用电路3.6.1传感器种类引见3.6.2霍尔传感器与应用电路3.6.3金属传感器与应用电路3.6.4温度传感器与应用电路3.6.5光电传感器与应用电路3.6.6超声波传感器与应用电路3.7功率驱动电路3.7.1直流电机驱动接口电路3.7.2步进电机及驱动电路3.7.3继电器电路3.7.4固态继电器电路3.8显示电路3.8.1LED显示器接口电路3.8.2LCD显示器的控制3.9A/D转换器3.9.1A/D转换器的分类及简介3.9.2A/D转换器的主要技术指标3.9.3A/D转换器及其相应接口电路选择原则3.9.4常用AD转换器3.9.5A/D接口电路及程序设计3.10D/A转换器3.10.1D/A转换器分类及简介3.10.2D/A转换器的主要技术指标3.10.3D/A转换器选用原则3.10.4常用D/A转换器3.10.5D/A接口电路及程序设计第4章单片机最小系统设计制作训练4.1单片机最小系统设计制作4.1.1单片机最小系统电路板硬件设计4.1.2单片机最小系统电路板测试程序设计4.2通用键盘显示电路设计制作4.2.1通用可编程键盘和显示器的接口电路芯片82794.2.2基于8279的通用键盘和显示电路硬件设计4.2.38279与单片机最小系统电路板的连接4.2.4基于8279的通用键盘和显示电路程序设计4.3单片机与液晶显示电路接口电路及程序设计4.3.1MDLS点阵字符型液晶显示模块模块及程序设计4.3.2LMA97S005AD点阵图形型液晶显示模块及程序设计4.4单片机与D/A及A/D转换电路设计制作4.4.1D/A转换电路及程序设计4.4.2A/D转换电路及程序设计第5章可编程逻辑器件系统设计制作训练5.1FPGA最小系统的设计制作5.1.1Xilinx公司的FPGA器件5.1.2FPGA最小系统电路设计5.1.3FPGA最小系统印制板设计5.1.4FPGA最小系统电源电路的设计5.2FPGA最小系统配置电路的设计5.2.1使用PC并行口配置FPGA5.2.2使用单片机配置FPGA5.2.3Spartan-Ⅱ器件的配置5.2.4各种模式的配置方式5.3Modelsim仿真工具的使用5.3.1设计流程5.3.2功能仿真和时序仿真5.3.3功能仿真
1
为了校正机载共形光学窗口引入的随观察视角变化的动态像差,提出基于计算成像的共形光学系统像差校正方法。
通过建立非相干成像系统模型,给出波前编码系统消除共形光学窗口动态像差的原理和成像过程,阐明基于计算成像的共形光学系统的设计原则和掩模板的优化流程,利用倾斜边缘法定量分析该系统的传递能力。
实验结果表明,通过计算成像的方法可以校正机载共形光学系统的动态像差,并且无需加入复杂的校正器件,该系统具有结构简单和稳定性强的优点。
1
Nd-3-H掺杂磷酸盐玻璃中的光学平面波导是通过以6.0x1014离子/cm2的剂量注入6.0-MeV碳离子和以6.0x1014离子/cm的注入量注入6.0-MeV氧离子制造的(2)。
引导模和相应的有效折射率是通过模态2010棱镜耦合器测量的。
基于物质中离子的终止和范围以及RCM反射率计算方法,分析了波导的折射率分布。
分别通过端面耦合法和有限差分光束传播法测量并模仿了近场光强度分布。
进行了碳注入波导和氧注入波导的光学特性的比较。
微发光和拉曼光谱研究表明,Nd3-离子的荧光性质和玻璃微结构在波导区域中得到了很好的保留,这表明碳/氧注入波导是集成光子器件的良好候选者。
(C)2015年光电仪器工程师协会(SPIE)
2020/11/15 18:45:05 1.49MB waveguide; ion implantation; Nd3+-doped
1
Nd-3-H掺杂磷酸盐玻璃中的光学平面波导是通过以6.0x1014离子/cm2的剂量注入6.0-MeV碳离子和以6.0x1014离子/cm的注入量注入6.0-MeV氧离子制造的(2)。
引导模和相应的有效折射率是通过模态2010棱镜耦合器测量的。
基于物质中离子的终止和范围以及RCM反射率计算方法,分析了波导的折射率分布。
分别通过端面耦合法和有限差分光束传播法测量并模仿了近场光强度分布。
进行了碳注入波导和氧注入波导的光学特性的比较。
微发光和拉曼光谱研究表明,Nd3-离子的荧光性质和玻璃微结构在波导区域中得到了很好的保留,这表明碳/氧注入波导是集成光子器件的良好候选者。
(C)2015年光电仪器工程师协会(SPIE)
2021/6/21 18:05:09 1.49MB waveguide; ion implantation; Nd3+-doped
1
采用ijbt作为开关器件的单相桥式电压逆变电路,经过此电路能直观的观察到我们想要获取的结果采用ijbt作为开关器件的单相桥式电压逆变电路,经过此电路能直观的观察到我们想要获取的结果
2017/11/4 4:07:13 105KB 单相桥式 pwm 逆变 仿真
1
数字电压表课程设计是我们很多童鞋一起辛苦做出来的劳动成果,里面东西很详细有protues仿真图,keill编程,还有我们使用的元器件的引脚材料图,所以以才值十分,希望下载看了后再给我评价!功能要求:1.用按键选择测量11路0~10V的输入电压值。
2.显示器件为LCD16023.测量的最小分辨率为0.002V,测量误差约为正0.002V所用AD转换器件为TLC549,单片机为89C51最好有超量程报警电路
1
共 744 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡