K-Means图像灰度值的聚类。
很好的程序
2023/12/3 4:58:50 1KB 生成分形树
1
k-means自适应聚类算法的matlab程序,根据文献中描述的算法编的,欢迎高手指教
2023/11/28 2:41:06 6KB k-means,自适应聚类
1
基于K-means聚类的图像分割步骤,对初学者有很好的帮助
2023/11/27 18:54:46 16KB 分割 聚类
1
无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。
本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;
*后介绍了无监督学习在基因选择、疾病诊断中的应用。
2023/11/21 9:58:40 86.49MB 机器学习 无监督学习
1
算法思想:提取文档的TF/IDF权重,然后用余弦定理计算两个多维向量的距离来计算两篇文档的相似度,用标准的k-means算法就可以实现文本聚类。
源码为java实现
2023/11/20 2:12:44 9KB kmeans 中文 文本聚类 tf
1
k-means算法接受输入量k;
然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;
而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
  k-means算法的工作过程说明如下:首先从n个数据对象任意选择k个对象作为初始聚类中心;
而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;
然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);
不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数.k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
2023/11/11 15:04:35 17KB matlab
1
K-means聚类算法c语言实现。
样本数据从文件读入,支持任意维数数据和任意k值(k当然要小于样本数),同时可以防止分出空类。
为做作业原创
2023/11/8 14:25:42 5KB k-means c-means 聚类 cluster
1
使用k-means聚类算法,使用无监督聚类算法。
2023/11/8 8:12:43 5KB 机器学习聚类
1
基于内容的图像检索技术:1、基于颜色的图像检索:用的是二分K-means算法实现的2、基于纹理的图像检索:用的是灰度共生矩阵实现的3、基于形状的图像检索:用的是形状不变矩法实现的语言:python工具:VScode数据库:没用数据库,图像特征值直接放在txt文件里图像来源:Corel图像库中2000幅图像(资源里放在image.orig文件夹里)该项目可以直接使用!
1
hadoopk-means算法实现java工程的打包类,可直接在terminal中运行,运行命令为:$HADOOP_HOME/bin/hadoopjarClusterDemo.jarmain.Cluster然后直接确定就可以看到提示的运行参数或者参考下面:+"\n" +"\t:输入文件路径\n" +"\t:输出文件路径\n" +"\t:初始中心路径\n" +"\t:临时输出文件路径\n" +"\t:循环最大次数\n" +"\t:聚类中心变化阈值\n" +"\t:聚类中心数目\n" +"\t:原始数据属性数目\n" +"\t:reduce数目");
2023/10/30 8:43:26 12KB hadoop k-means
1
共 125 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡