DataCastle轴承故障预测数据集,可供下载使用的有2个文件:1.train.csv,训练集数据,1到6000为按时间序列连续采样的振动信号数值,每行数据是一个样本,共792条数据,第一列id字段为样本编号,最后一列label字段为标签数据,即轴承的工作状态,用数字0到9表示。
2.test_data.csv,测试集数据,共528条数据,除无label字段外,其他字段同训练集。
总的来说,每行数据除去id和label后是轴承一段时间的振动信号数据,选手需要用这些振动信号去判定轴承的工作状态label。
2023/6/15 11:38:32 21.87MB 数据集
1
数据集目录:2dplanes.arffabalone.arffailerons.arffAmazon_initial_50_30_10000.arffanneal.arffanneal.ORIG.arffarrhythmia.arffaudiology.arffaustralian.arffauto93.arffautoHorse.arffautoMpg.arffautoPrice.arffautos.arffauto_price.arffbalance-scale.arffbank.arffbank32nh.arffbank8FM.arffbaskball.arffbodyfat.arffbolts.arffbreast-cancer.arffbreast-w.arffbreastTumor.arffbridges_version1.arffbridges_version2.arffcal_housing.arffcar.arffcholesterol.arffcleveland.arffcloud.arffcmc.arffcolic.arffcolic.ORIG.arffcontact-lenses.arffcpu.arffcpu.with.vendor.arffcpu_act.arffcpu_small.arffcredit-a.arffcredit-g.arffcylinder-bands.arffdelta_ailerons.arffdelta_elevators.arffdermatology.arffdetroit.arffdiabetes.arffdiabetes_numeric.arffechoMonths.arffecoli.arffelevators.arffelusage.arffeucalyptus.arffeye_movements.arfffishcatch.arffflags.arfffried.arfffruitfly.arffgascons.arffglass.arffgrub-damage.arffheart-c.arffheart-h.arffheart-statlog.arffhepatitis.arffhouse_16H.arffhouse_8L.arffhousing.arffhungarian.arffhypothyroid.arffionosphere.arffiris.2D.arffiris.arffkdd_coil_test-1.arffkdd_coil_test-2.arffkdd_coil_test-3.arffkdd_coil_test-4.arffkdd_coil_test-5.arffkdd_coil_test-6.arffkdd_coil_test-7.arffkdd_coil_train-1.arffkdd_coil_train-3.arffkdd_coil_train-4.arffkdd_coil_train-5.arffkdd_coil_train-6.arffkdd_coil_train-7.arffkdd_el_nino-small.arffkdd_internet_usage.arffkdd_ipums_la_97-small.arffkdd_ipums_la_98-small.arffkdd_ipums_la_99-small.arffkdd_JapaneseVowels_test.arffkdd_JapaneseVowels_train.arffkdd_synthetic_control.arffkdd_SyskillWebert-Bands.arffkdd_SyskillWebert-BioMedical.arffkdd_SyskillWebert-Goats.arffkdd_SyskillWebert-Sheep.arffkdd_UNIX_user_data.arffkin8nm.arffkr-vs-kp.arfflabor.arfflandsat_test.arfflandsat_train.arffletter.arffliver-disorders.arfflongley.arfflowbwt.arfflung-cancer.arfflymph.arffmachine_cpu.arffmbagrade.arffmeta.arffmfeat-factors.arffmfeat-fourier.arffmfea
2023/6/6 15:27:36 19.67MB arff weka 数据集
1
自己生成的mnist原本的ubyte格式转成的matlab的mat格式,包括train-image(train_x)60000*784,train-label(train_y)60000*1,test-image(test_x)10000*784,test-label(test_y)10000*1
2023/6/5 18:27:38 13.94MB 机器学习 mnist matlab
1
参数估计function[mu,sigma]=Bayesian_parameter_est(train_patterns,train_targets,sigma)
2023/5/31 7:44:08 2KB 贝叶斯
1
这个是我参照网上的一些代码写的,可以训练和识别,但是没有做预处理,所以录音时要注意不要出现没声音的片段,识别率不是很高,可以做一下参考!code=train('train\',4)%训练test('test\',8,code)%识别
2023/5/16 21:46:46 2.37MB matlba GMM 高斯混合模型 说话人识别
1
搜罗mnist-test-leveldb以及mnist-train-leveldb,用于在windows体系VS平台下配置配备枚举测试运行caffe。
2023/5/14 22:29:46 11.14MB mnist数据集 mnist-leveldb
1
残缺的FG-NET数据库,搜罗train图片,test图片以及points文件
2023/5/11 17:15:58 43.43MB 年龄估计 年龄数据库
1
cnn_utils.py、test_signs.h五、train_signs.h5,亲测!
2023/5/4 6:56:54 8.55MB DeepLearning
1
交通标志数据集,共有62类交通标志。
其中熬炼集数占有4572张照片(每一个种别大概七十个),测试数据集有2520张照片(每一个种别大概40个)。
数据搜罗两个子目录分别train与test实战地址:https://blog.csdn.net/xiaosongshine
2023/4/26 23:43:37 190.04MB 数据集 图像分类
1
#GPF##一、GPF(GraphProcessingFlow):行使图神经收集处置下场的普通化流程一、图节点预展现:行使NE框架,直接患上到全图每一个节点的Embedding;二、正负样本采样:(1)单节点样本;
(2)节点对于样本;
三、抽取封锁子图:可做类化处置,建树一种通用图数据结构;四、子图特色领悟:预展现、节点特色、全局特色、边特色;五、收集配置配备枚举:可所以图输入、图输入的收集;
也可所以图输入,分类/聚类下场输入的收集;六、熬炼以及测试;##二、首要文件:一、graph.py:读入图数据;二、embeddings.py:预展现学习;三、sample.py:采样;四、subgraphs.py/s2vGraph.py:抽取子图;五、batchgraph.py:子图特色领悟;六、classifier.py:收集配置配备枚举;七、parameters.py/until.py:参数配置配备枚举/帮手文件;##三、使用一、在parameters.py中配置配备枚举相关参数(可默许);
二、在example/文件夹中运行响应的案例文件--搜罗链接料想、节点外形料想;
以链接料想为例:###一、导入配置配备枚举参数```fromparametersimportparser,cmd_embed,cmd_opt```###二、参数转换```args=parser.parse_args()args.cuda=notargs.noCudaandtorch.cuda.is_available()torch.manual_seed(args.seed)ifargs.cuda:torch.cuda.manual_seed(args.seed)ifargs.hop!='auto':args.hop=int(args.hop)ifargs.maxNodesPerHopisnotNone:args.maxNodesPerHop=int(args.maxNodesPerHop)```###三、读取数据```g=graph.Graph()g.read_edgelist(filename=args.dataName,weighted=args.weighted,directed=args.directed)g.read_node_status(filename=args.labelName)```###四、患上到全图节点的Embedding```embed_args=cmd_embed.parse_args()embeddings=embeddings.learn_embeddings(g,embed_args)node_information=embeddings#printnode_information```###五、正负节点采样```train,train_status,test,test_status=sample.sample_single(g,args.testRatio,max_train_num=args.maxTrainNum)```###六、抽取节点对于的封锁子图```net=until.nxG_to_mat(g)#printnettrain_graphs,test_graphs,max_n_label=subgraphs.singleSubgraphs(net,train,train_status,test,test_status,args.hop,args.maxNodesPerHop,node_information)print('#train:%d,#test:%d'%(len(train_graphs),len(test_graphs)))```###七、加载收集模子,并在classifier中配置配备枚举相关参数```cmd_args=cmd_opt.parse_args()cmd_args.feat_dim=max_n_label+1cmd_args.attr_dim=node_information.shape[1]cmd_args.latent_dim=[int(x)forxincmd_args.latent_dim.split('-')]iflen(cmd_args.latent_dim)
2023/4/8 5:48:07 119KB 图神经网络 Graph Proces GPF
1
共 88 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡