1.C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2.K-means算法:是一种聚类算法。
3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中4.Apriori:是一种最有影响的挖掘布尔关联规则频繁项集的算法。
5.EM:最大期望值法。
6.pagerank:是google算法的重要内容。
7.Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。
8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。
9.NaiveBayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(NaiveBayes)10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝
2024/1/25 9:25:40 626KB 数据
1
用C语言写的K-means聚类算法,有助于初学者的学习使用
2023/12/25 23:25:49 1.02MB 聚类算法
1
K-Means图像灰度值的聚类。
很好的程序
2023/12/3 4:58:50 1KB 生成分形树
1
k-means自适应聚类算法的matlab程序,根据文献中描述的算法编的,欢迎高手指教
2023/11/28 2:41:06 6KB k-means,自适应聚类
1
基于K-means聚类的图像分割步骤,对初学者有很好的帮助
2023/11/27 18:54:46 16KB 分割 聚类
1
无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。
本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;
*后介绍了无监督学习在基因选择、疾病诊断中的应用。
2023/11/21 9:58:40 86.49MB 机器学习 无监督学习
1
算法思想:提取文档的TF/IDF权重,然后用余弦定理计算两个多维向量的距离来计算两篇文档的相似度,用标准的k-means算法就可以实现文本聚类。
源码为java实现
2023/11/20 2:12:44 9KB kmeans 中文 文本聚类 tf
1
k-means算法接受输入量k;
然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;
而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
  k-means算法的工作过程说明如下:首先从n个数据对象任意选择k个对象作为初始聚类中心;
而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;
然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);
不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数.k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
2023/11/11 15:04:35 17KB matlab
1
K-means聚类算法c语言实现。
样本数据从文件读入,支持任意维数数据和任意k值(k当然要小于样本数),同时可以防止分出空类。
为做作业原创
2023/11/8 14:25:42 5KB k-means c-means 聚类 cluster
1
使用k-means聚类算法,使用无监督聚类算法。
2023/11/8 8:12:43 5KB 机器学习聚类
1
共 127 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡