MatConvNet是一个实现卷积神经网络(CNN)的MATLAB工具箱,用于计算机视觉应用。
用这个工具箱,能很方便地在MATLAB中用GPU来进行训练。
2024/8/30 4:46:30 1.87MB MATLAB CNN
1
某位大牛在github上分享的CNN车牌识别源代码,在将其装到Windows的Python下运行时碰到了各种报错(WIN8下python3.6,Opencv3.0),有些问题搜遍网络也没找到解决方法。
最后终于调通,可以进行训练和预测。
不过训练的收敛速度不太理想,有待继续研究。
分享出来给有兴趣的同学,或许可少走些弯路。
2024/8/23 1:48:42 14.78MB CNN
1
CNN识别手写数字,很好的机器学习初心者学习资料,里面包含了MATLAB代码和详细的注释,可以直接运行
2024/8/20 3:10:04 14.03MB CNN 手写识别 数字识别 手写数字识别
1
反向传播算法是人工神经网络训练时采用的一种通用方法,在现代深度学习中得到了大规模的应用。
全连接神经网络(多层感知器模型,MLP),卷积神经网络(CNN),循环神经网络(RNN)中都有它的实现版本。
算法从多元复合函数求导的链式法则导出,递推的计算神经网络每一层参数的梯度值。
算法名称中的“误差”是指损失函数对神经网络每一层临时输出值的梯度。
反向传播算法从神经网络的输出层开始,利用递推公式根据后一层的误差计算本层的误差,通过误差计算本层参数的梯度值,然后将差项传播到前一层
1
遮罩评分R-CNN(MSR-CNN),,,。
CVPR2019口头论文,该项目基于。
介绍包含一个网络模块,用于了解预测的实例遮罩的质量。
所提出的网络块将实例特征和相应的预测掩码一起使用以对掩码IoU进行回归。
遮罩评分策略可在COCOAP评估过程中优先考虑更准确的遮罩预测,从而校准遮罩质量和遮罩得分之间的偏差,并提高实例分割性能。
通过对COCO数据集的广泛评估,MaskScoringR-CNN通过不同的模型和不同的框架带来一致且显着的收益。
MSR-CNN的网络如下:安装检查以获取安装说明。
准备数据mkdir-pdatasets/cocoln-s/path_to_coco_dataset/annotationsdatasets/coco/annotationsln-s/path_to_coco_dataset/trai
2024/7/13 21:17:27 1.59MB Python
1
卷积神经网络CNN代码解析,对MATLAB-deeplearningmaster工具箱的例子进行了说明。
2024/7/6 20:44:36 579KB CNN
1
深度学习初学者常见数据集,使用最广泛,适合跑RNN,CNN等多个模型的数据集
2024/7/3 3:31:30 21.32MB mnist手写数据集
1
使用CNN深度学习网络keras框架识别交通标志使用了dataaugmentation,preprocess图片dropout等训练技巧
2024/6/29 12:48:28 862KB keras
1
基于CNN的疲劳检测源码-Python-模型:CNN;
-drowsinessdetection;-blinkdetection;-yawningdetection
2024/6/24 9:15:15 3.94MB CNN; openCV
1
Web的动手Python深度学习这是由Packt发布的AnubhavSingh和SayakPaul编写的“的代码库。
集成神经网络架构以使用Flask,Django和TensorFlow构建智能Web应用这本书是关于什么的?有效地使用深度学习技术可以帮助您开发智能Web应用程序。
在本书中,您将介绍用于使用Python在Web开发中实施深度学习的最新工具和技术实践。
从机器学习的基础知识开始,您将专注于DL和神经网络的基础知识,包括常见的变体,例如卷积神经网络(CNN)。
您将学习如何使用不同标准Web技术堆栈的前端将它们集成到网站中。
然后,本书通过为自定义模型创建RESTfulAPI,帮助您获得使用Python库(例如Django和Flask)开发支持深度学习的Web应用程序的实践经验。
稍后,您将探索如何为GoogleCloud和AmazonWebServices(AWS)上基于深度学习的Web部署设置云环境。
本书涵盖了以下令人兴奋的功能:探索深度学习模型并在浏览器中实现使用Django和Flask设计基于Web的智能客户端使用不同的基于Py
2024/6/19 18:14:16 44.25MB flask aws django deep-learning
1
共 213 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡