模板匹配与车牌识别是以计算机数字图像处理,模式识别等技术为基础,对图形进行预处理及边缘检测等过程来实现对车牌区域的定位,然后对车牌区域进行图像裁剪、归一化、字符分割及保存,最后将分割得到的字符图像与模板进行匹配识别,从而输出匹配结果。
代码在matlab可以直接运行。
2024/12/28 11:13:18 1.91MB matlab
1
物体图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、数字、曲线、字符格式和图形自动完成识别并且进行评价的过程。
图形匹配是图像识别技术的一个重要分支,图形匹配指通过对图形的图像采用特定算法。
本设计以MATLAB作为实现功能的操作平台,通过结合几何HU不变矩作为中间的连接数据,再运用图像预处理和欧式距离等数学方法,用Matlab进行编程,完成各个部分的效果,实现区域图像轮廓特征数据获取,计算欧氏距离,根据物体图像几何HU不变距的相似程度实现物体识别匹配的目的。
计算机模拟结果表明该方法的有效性和可行性。
2024/12/25 16:09:32 843KB matlab 轮廓匹配 物体识别
1
数据预处理中去除异常值的程序,matlab写的。






























2024/12/25 11:28:45 1KB matlab 去除异常值
1
针对纸币清分机对人民币编号自动识别,在处理速度和识别率方面的高标准要求,提出了一种基于模板匹配的人民币编号快速识别算法,该算法在图像预处理时,利用改进的滤波法去离散噪声;
在字符识别时,利用数字和字母的水平与竖直交点特征和轮廓对称特征以及加权特征,直接识别定位好的字符。
实验结果表明,该算法具有对硬件资源要求低、识别速度快等优点,可以满足纸币清分机的应用要求。
2024/12/16 15:13:16 204KB 人民币编号 图像识别 算法
1
matlab(程序)分析了二维码编码技术,基于图像处理的解码技术,及其编码实现过程。
针对解码识别过程,详细分析了基于图像处理的预处理方法,包括二维码灰度化处理、图像平滑和二值化过程,同时针对二维码实际情况,设计了基于Canny和Hough变换的二维码旋转校正算法,几何形变校正算法,并通过QR二维码进行实验
2024/12/15 11:48:53 439KB 二维码平滑 二值化 校正等
1
识别0-9十个数字,BP神经网络数字识别源代码使用说明第一步:训练网络。
使用训练样本进行训练。
(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。
首先,打开图像(256色);
再次,进行归一化处理,点击“一次性处理”;
最后,点击“R”或者使用菜单找到相应项来进行识别。
识别的结果显示在屏幕上,同时也输出到文件result.txt中。
该系统的识别率一般情况下为90%。
此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。
具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-“紧缩重排”。
注意,待识别的图片要与win.dat和whi.dat位于同一目录,这两文件保存训练后网络的权值参数。
具体使用请参照书中说明。
2024/12/5 8:55:53 60KB BP神经网络
1
人脸识别是一个非常困难的模式识别问题,具有非常广阔的应用前景。
一个人脸识别系统包括预处理、特征提取和分类器设计三个部分,对输入的人脸图像进行预处理是人脸识别过程中的一个重要步骤。
人脸图像由于在生成、传输或变换过程中会受到各种因素的干扰和影响,从而产生噪声。
为了保证提取的特征对人脸在图像中的大小、位置和偏斜具有不变性,以及对光照条件具有不敏感性,故特别需要对人脸图像进行预处理。
包括人脸识别技术分析研究及各种算法
2024/11/29 13:31:11 3.23MB 人脸识别
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。
"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。
我们来详细了解一下数据集的概念。
数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。
在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。
这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。
在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。
jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。
对于这样的数据集,可以进行以下几种机器学习任务:1.图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。
例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。
2.目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。
3.实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。
4.异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。
构建这样的模型通常涉及以下几个步骤:1.数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。
2.模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。
3.训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。
4.测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。
5.部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。
"各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024/11/22 10:52:17 840.11MB 数据集
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
通过使用matlab软件图像处理功能,对车牌图像进行图像预处理、边缘检测、车牌定位、车牌字符分割、车牌字符识别等5个基本处理,使用基于HSV颜色空间的车牌定位方法和基于模板匹配的字符识别算法,对所要求的汽车车牌进行信息提取,并得出最终结果。
2024/11/17 13:21:43 11.96MB 车牌识别 matlab 字符模板
1
共 324 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡