误差反向传播(Backpropagation,简称BP)是深度学习领域中最常见的训练人工神经网络(Artificial Neural Network,ANN)的算法。
它主要用于调整网络中权重和偏置,以最小化预测结果与实际值之间的误差。
在本项目中,我们看到的是如何利用BP算法构建一个两层神经网络来识别MNIST手写数字数据集。
MNIST数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。
BP算法通过迭代过程,对每个样本进行前向传播计算预测结果,并使用梯度下降优化方法更新权重,以提高模型在训练集上的表现。
文件"bp_two_layer_net.py"可能包含了实现BP算法的主体代码,它定义了网络结构,包括输入层、隐藏层和输出层。
"net_layer.py"可能是定义神经网络层的模块,包括前向传播和反向传播的函数。
"train_bp_two_neuralnet.py"很可能是训练脚本,调用前面的网络和训练数据,执行多次迭代以优化权重。
"buy_orange_apple.py"、"layer_naive.py"、"gradient_check.py"和"buy_apple.py"这四个文件的名称看起来与主题不太直接相关,但它们可能是辅助代码或者示例程序。
"buy_orange_apple.py"可能是一个简单的决策问题,用于帮助理解基本的逻辑操作;
"layer_naive.py"可能包含了一个基础的神经网络层实现,没有使用高级库;
"gradient_check.py"可能是用来验证反向传播计算梯度正确性的工具,这对于调试深度学习模型至关重要;
而"buy_apple.py"可能是另一个类似的小示例,用于教学或练习目的。
在BP算法中,计算图的概念很重要。
计算图将计算过程表示为一系列节点和边,节点代表操作,边代表数据。
在反向传播过程中,通过计算图的反向遍历,可以高效地计算出每个参数对损失函数的影响,从而更新参数。
在深度学习中,神经网络的优化通常依赖于梯度下降算法,它根据梯度的方向和大小来更新权重。
对于大型网络,通常采用随机梯度下降(Stochastic Gradient Descent, SGD)或其变种,如动量SGD、Adam等,以提高训练速度和避免局部最优。
总结来说,这个项目涉及了误差反向传播算法在神经网络中的应用,特别是在解决MNIST手写数字识别问题上的实践。
通过理解和实现这些文件,我们可以深入理解BP算法的工作原理,以及如何在实际问题中构建和训练神经网络。
同时,它也展示了计算图和梯度检查在深度学习模型开发中的关键作用。
2025/6/15 20:24:19 5KB
1
简介:
可以广泛的应用于数据预测及数据分析,预报误差法参数辨识-松弛的思想,使用混沌与分形分析的例程,部分实现了追踪测速迭代松弛算法,独立成分分析算法降低原始数据噪声,本科毕设要求参见标准测试模型,通过matlab代码,基于互功率谱的时延估计。
2025/6/15 19:49:45 7KB
1
对单个图片进行k-svd进行稀疏表示,求出迭代后的字典和稀疏编码,并通过字典和稀疏编码进行重建原图像,该代码是2006年k-svd算法提出者的简单实现代码,对小白有一定帮助
2025/6/13 22:32:14 3KB k-svd python dictionary-l
1
本资源里有有效的CDD图像修复的matlab程序,程序里是正确的曲率K计算公式,还有有效的TV模型matlab程序,CDD修复效果见博客http://blog.csdn.net/cs_o_1/article/details/52943306提醒:CDD模型不具有较好的收敛性,迭代次数得上千,效果才比较好,博客中CDD修复的迭代次数达到2000次
2025/6/12 1:37:31 6.29MB CDD图像修复
1
针对复杂运动背景中慢速小目标检测误检率高,实时性差等问题,提出了基于自适应阈值分割的慢速小目标检测算法。
首先计算连续两帧图像特征点的金字塔光流场,对光流场进行滤波,获取匹配特征点集合。
然后对图像运动背景进行建模,拟合投影模型参数,通过投影模型得到运动背景补偿图像,进行图像差分处理,获得差分图像。
最后迭代计算差分图像的自适应阈值,修正差分阈值,差分图像二值分割,检测出运动目标。
实验结果表明算法能够准确地检测出复杂背景中的慢速小目标,虚警率为2%,目标漏检率为2.6%,目标检测准确率95.4%,每帧图像目标检测时间为38ms,能够满足运动目标检测对实时性的要求。
1
《自适应粒子群及其优化算法》第一章在分析全局优化的特点与难点基础上,对当前典型的群智能优化算法进行介绍;
第二章首先阐述了基本粒子群优化算法的思想,然后分析了粒子群算法的优化模型和算法行为,在此基础上对自适应粒子群优化算法的思想进行了深入分析;
第三章针对PSO算法求解组合优化问题时,速度迭代公式难以定义的问题,提出等值变换、异值变换和变换序列等概念的基础上,通过重新定义粒子的速度和位置迭代公式,设计随机自适应粒子群优化模型并用以求解0-1背包问题。
2025/6/5 15:35:57 62.77MB 粒子群算法
1
最小二乘滤波算法的基本算法是递归最小二乘算法,这种算法实际上是FIR维纳滤波器的一种时间递归实现,它是严格以最小二乘准则为依据的算法。
它的主要优点是收敛速度快,所以在快速信道均衡、实时系统辨识和时间序列分析中得到了广泛应用。
其主要缺点是每次迭代需要的运算量很大。
2025/6/4 7:51:56 32KB 最小二乘
1
Java实现压缩与解压缩ZIP  importjava.io.BufferedInputStream;  importjava.io.BufferedOutputStream;  importjava.io.File;  importjava.io.FileInputStream;  importjava.io.FileOutputStream;  importjava.util.zip.ZipEntry;  importjava.util.zip.ZipOutputStream;  publicclassZip{  staticfinalintBUFFER=2048;  publicstaticvoidmain(Stringargv[]){  try{  BufferedInputStreamorigin=null;  FileOutputStreamdest=newFileOutputStream("E:\\test\\myfiles.zip");  ZipOutputStreamout=newZipOutputStream(newBufferedOutputStream(  dest));  bytedata[]=newbyte[BUFFER];  Filef=newFile("e:\\test\\a\\");  Filefiles[]=f.listFiles();  for(inti=0;i<files.length;i++){  FileInputStreamfi=newFileInputStream(files[i]);  origin=newBufferedInputStream(fi,BUFFER);  ZipEntryentry=newZipEntry(files[i].getName());  out.putNextEntry(entry);  intcount;  while((count=origin.read(data,0,BUFFER))!=-1){  out.write(data,0,count);  }  origin.close();  }  out.close();  }catch(Exceptione){  e.printStackTrace();  }  }  }  解压缩的  importjava.io.BufferedInputStream;  importjava.io.BufferedOutputStream;  importjava.io.File;  importjava.io.FileOutputStream;  importjava.util.Enumeration;  importjava.util.zip.ZipEntry;  importjava.util.zip.ZipFile;  publicclassUnZip{  staticfinalintBUFFER=2048;  publicstaticvoidmain(Stringargv[]){  try{  StringfileName="E:\\test\\myfiles.zip";  StringfilePath="E:\\test\\";  ZipFilezipFile=newZipFile(fileName);  Enumerationemu=zipFile.entries();  inti=0;  while(emu.hasMoreElements()){  ZipEntryentry=(ZipEntry)emu.nextElement();  //会把目录作为一个file读出一次,所以只建立目录就可以,之下的文件还会被迭代到。
  if(entry.isDirectory())  {  newFile(filePath+entry.getName()).mkdirs();  continue;  }  BufferedInputStreambis=newBufferedInputStream(zipFile.getInputStream(entry));
1
大学数学里数值分析的课程实验报告,题目是非线性方程组的数值解法。
里面包括了不动点迭代法和牛顿迭代法的例子,原理,程序,及结果。
2025/5/29 7:25:08 167KB 不动点迭代
1
重心法模板求解最优坐标,只要在对应的区域输入自己的数据,便可以轻易的得出最优解,轻松解决复杂的迭代运算问题
2025/5/28 14:11:32 103KB 重心法
1
共 548 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡