【GNSS/INS松组合导航Matlab程序】是一种在航空航天、自动驾驶、航海等领域广泛应用的导航技术,它结合了全球导航卫星系统(GNSS)和惯性导航系统(INS)的优点,提高了定位精度和稳定性。
在Matlab环境中实现这种松组合导航,能够方便地进行算法设计、仿真与验证。
我们要理解GNSS和INS的基本原理。
GNSS,如GPS(全球定位系统),通过接收来自卫星的信号来确定地面设备的位置、速度和时间。
而INS则依赖于陀螺仪和加速度计来测量载体的运动状态,无需外部参考即可连续提供位置、速度和姿态信息。
然而,GNSS可能会受到遮挡或干扰,INS则存在累积误差问题,松组合导航正是为了解决这些问题。
松组合导航的关键在于数据融合。
在Matlab程序中,通常会先利用GNSS数据生成初始的轨迹,然后根据这个轨迹产生模拟的惯导数据,包括陀螺仪和加速度计的输出。
这部分涉及到了信号处理、滤波理论和随机过程的知识,比如卡尔曼滤波(KalmanFilter)常被用于融合这两类传感器的数据。
接下来,这些模拟数据会被输入到惯导解算器中,进行运动状态的更新和校正。
惯导解算通常涉及到牛顿-欧拉方程、四元数表示法等,用于计算载体的位置、速度和姿态。
在Matlab中,可以利用内置的函数或自定义算法来实现这一过程。
仿真完成后,会使用这些模拟的GPS和INS数据进行松组合导航的实现。
松组合意味着GNSS和INS系统保持相对独立,各自进行数据处理,然后在一个高层次上进行信息交换。
这样做的好处是可以避免一个系统的误差影响另一个系统,同时保留各自的优点。
组合导航算法可能包括简单的数据融合策略,如时间同步或者更复杂的滤波算法。
在【sins+gnss】这个压缩包中,可能包含了实现上述功能的Matlab源代码文件,如初始化配置文件、数据生成脚本、滤波算法实现、结果分析工具等。
用户可以通过阅读和运行这些代码,深入理解松组合导航的工作原理,并对其进行定制和优化。
GNSS/INS松组合导航Matlab程序是导航技术研究的重要工具,涵盖了卫星导航、惯性导航、数据融合等多个领域的知识。
通过对这套程序的学习和实践,不仅可以掌握相关算法,还可以提升在复杂环境下的定位能力,对于科研和工程应用具有很高的价值。
2025/4/7 15:39:40 6.49MB matlab GNSS/INS
1
视觉跟踪技术作为计算机视觉领域的热门课题之一,是对连续的图像序列进行运动目标检测、提取特征、分类识别、跟踪滤波、行为识别,以获得目标准确的运动信息参数(如位置、速度等),并对其进行相应的处理分析,实现对目标的行为理解。
视觉跟踪是指对图像序列中的运动目标进行检测、提取、识别和跟踪,获得运动目标的运动参数,如位置、速度、加速度和运动轨迹等,从而进行下一步的处理与分析,实现对运动目标的行为理解,以完成更高一级的检测任务。
2025/4/6 0:40:14 8.68MB 视觉跟踪 avi监控视
1
随着科技的发展,劳动力成本持续上升,工业机器人由于具有速度快、效率高、质量稳定,抗疲劳性强,并且能够从事危险工作等的特点,因此已被广泛应用于工业、医疗、军事等行业,并发挥着越来越重要的作用。
本课题的研究对象为工业机器人的控制系统,主要研究控制系统中的运动学算法和轨迹规划算法。
在算法实现和仿真的基础上,对模型机器人进行算法的验证,在验证成功的基础上,对新松工业机器人进行运动学和轨迹规划实体测试。
2025/4/5 11:49:24 22MB LabVIEW 工业机器人
1
只需改函数的原始参数就可以分析各种曲柄连杆机构的运动,包括角位移,角速度,角加速度,和运动仿真
2025/4/4 16:43:53 3KB 曲柄连杆
1
红绿灯识别opencv运动物体识别
2025/3/29 22:50:51 4.19MB opencv 红绿灯识别 运动物体识别
1
运动图像模糊的恢复,c++实现
2025/3/29 16:34:07 129KB 图像恢复
1
vs2013+opencv2.4.9亲测可用,运动目标检测效果良好,备注详细
2025/3/29 4:19:13 5KB vibe算法
1
选用背景差分法和形态学算法提取目标骨架,骨架提取经历九步:图像灰度化,背景差分法提取目标轮廓,使用CLAHE算法增强对比度,高斯滤波,Solel算子进行边缘检测,小波去噪,最大类间误差法二值化,形态学运算和中值滤波。
然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。
算法总体效果可以,误检较少。
2025/3/28 6:38:04 3KB 行为检测
1
运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
电赛2020A题心电信号测量比赛代码,无线运动传感器节点,io口和代码已经标注好,直接用即可。
比完了,选择发布出来一起学习。
2025/3/19 2:54:16 4.52MB 嵌入式 电赛 心电信号
1
共 927 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡