在IT领域,尤其是在嵌入式系统、汉字处理与显示技术中,HZK16是一种非常重要的资源,它包含了汉字的点阵数据,用于在字符显示器上显示汉字。
点阵数据是指由一系列点(像素)组成的图像信息,对于汉字而言,这些点阵数据能够构成特定的汉字形状。
HZK16中的汉字点阵数据是以16x16的格式存储的,每个汉字占用16行,每行有16个像素点。
在给定的文件信息中,标题“HZK16C语言数据”表明这份资料是关于HZK16汉字点阵数据在C语言中的表示方式。
C语言是一种广泛使用的编程语言,尤其适用于系统级编程和嵌入式开发。
将HZK16的点阵数据以C语言的格式编写,意味着这些数据可以直接被C程序引用,用于汉字的显示或处理。
描述部分提到“从HZK16中提取的汉字点阵数据”,这暗示了这份数据是从一个更大的HZK16字体库中抽取出来的。
这样的字体库通常包含数千个汉字的点阵数据,每个汉字都对应着一组特定的二进制值,这些值在C语言中表示为十六进制数,如代码片段所示:“constunsignedGB2312_HZK_1[94][32]={...}”。
这里定义了一个二维数组,数组名为GB2312_HZK_1,大小为94行,每行32个元素,每个元素都是一个十六进制数,代表汉字点阵的一个像素点状态。
例如,第一个汉字的第一行数据为:{0X00,0X00,...,0X00},表示这一行所有像素点都是空白的。
代码示例中的部分数据展示了汉字点阵的具体结构。
例如,第六个汉字的前几行数据为:```{0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X0C,0X18,0X1E,0X3C,0X1E,0X3C,0X0C,0X18,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00},```这组数据中,前十个元素为0X00,意味着这部分是空白的;
随后的八个元素逐渐变化,通过不同的十六进制数值来表示不同的像素点状态,最终构成了这个汉字的形状。
这种将汉字点阵数据以C语言格式编写的实践,在嵌入式系统、移动设备、电子书阅读器等硬件平台中十分常见,因为它们往往需要在有限的屏幕空间内高效地显示汉字。
通过预先定义好的点阵数据,可以快速准确地绘制出汉字,提高系统的响应速度和显示质量。
HZK16C语言数据的提取与使用,不仅体现了汉字编码与点阵数据的结合,还展现了C语言在处理这类复杂数据结构时的强大能力。
这对于从事汉字处理、嵌入式系统设计以及相关软件开发的工程师来说,是一份宝贵的学习资源和实践指南。
2025/10/17 14:57:22 1.27MB HZK16 点阵数据
1
jdk1.6官方正式版解压直接配置环境变量即可.另包含jre6,JDK是Java语言的软件开发工具包,JDK(TM)6简而言之就是一款针对java编程的软件工具,是学习java编程的第一步。
JDK作为Java语言的软件开发工具包,主要用于移动设备、嵌入设备的应用程序。
LDK的全称JavaDevelopmentKit,是Java语言的软件开发工具包,是整个java开发的核心,包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。
2025/10/16 21:53:35 102.19MB jdk1.6 jre6 java
1
用汇编语言编写交通灯模拟系统重庆大学计算机硬件的课程设计。
项目中需要用汇编编写图形程序、声音发生系统、定时等,用到了8254,8255,比较复杂,特拿出来分享,资源中包括两种方案,其中一种用jk板模拟,另一种用计算机输入输出设备完成。
耗费了本人大量心血,最后终于得优!!此外,其它学员相关课程的课题设计也可以借鉴本课题成果!
2025/10/14 15:51:44 1.93MB 交通灯 汇编 重庆大学
1
本文件包含STM32F10xxx全速USB设备开发套件用户手册中文版.pdf和usb2.0协议.pdf两个文档。
旨在帮助广大同学们学习如何利用stm32单片机开发诸如鼠标、摄像头等usb硬件设备。
如需学习windows驱动编程为你的usb设备开发驱动程序,敬请关注在下csdn账号。
本人有关于windowsusb驱动开发的相关文档:“windows驱动程序WDF开发+WDFUSB驱动开发指南+usb2.0协议”。
2025/10/14 10:36:54 2.21MB STM32 USB设备开发
1
蓝桥杯之单片机设计与开发——2016_第七届_蓝桥杯_国赛——“电压、频率采集设备”
2025/10/14 2:22:28 253KB 蓝桥杯 CT107D 2016年国 555测频
1
jdk1.8中文版官方文档,Java语言的软件开发工具包,主要用于移动设备、嵌入式设备上的java应用程序。
JDK是整个java开发的核心,它包含了JAVA的运行环境(JVM+Java系统类库)和JAVA工具。
2025/10/11 16:36:36 40.65MB Java jdk 1.8 api
1
**正文**在Windows操作系统开发中,MFC(MicrosoftFoundationClasses)是C++库的一个重要组成部分,它为构建桌面应用程序提供了一种结构化的框架。
而USBHID(HumanInterfaceDevice)是USB设备类规范的一种,主要用于人机交互设备,如键盘、鼠标、游戏控制器等。
本文将深入探讨如何使用MFC来实现对USBHID设备的读写操作。
我们需要理解USBHID的基本概念。
HID设备通过使用HID报告来与主机通信,这些报告包含了设备状态和用户输入的数据。
HID类驱动程序是操作系统的一部分,负责解析和处理这些报告。
开发者无需编写驱动程序,只需与设备的接口进行交互即可。
在MFC环境下,我们可以使用`CreateFile`函数打开USBHID设备,其参数通常包括设备的设备路径,例如`\\?\usb#vid_XXXX&pid_YYYY#...`,这里的`XXXX`和`YYYY`分别是设备的供应商ID和产品ID。
接着,我们调用`DeviceIoControl`函数来进行读写操作,传递适当的控制代码,如`IOCTL_HID_GET_REPORT`或`IOCTL_HID_SET_REPORT`。
为了更方便地管理USBHID设备,我们可以创建一个MFC类来封装这些系统调用。
这个类可以包含成员变量,如设备句柄、设备描述符和报告ID,以及成员函数,如`OpenDevice`、`ReadReport`、`WriteReport`和`CloseDevice`。
以下是一个简单的MFC类设计示例:```cppclassCHIDDevice:publicCObject{public:CHIDDevice();~CHIDDevice();boolOpenDevice(LPCTSTRdevicePath);voidCloseDevice();boolReadReport(void*buffer,DWORDsize);boolWriteReport(void*buffer,DWORDsize);private:HANDLEm_hDevice;};```在`OpenDevice`中,我们执行`CreateFile`,在`CloseDevice`中关闭句柄。
`ReadReport`和`WriteReport`则分别使用`DeviceIoControl`进行读写操作,传递适当的缓冲区和大小。
在实际应用中,我们还需要处理USBHID设备的枚举和选择。
可以遍历`SetupDiGetClassDevs`返回的设备信息集,获取HID设备的详细信息,并根据需求选择合适的设备。
此外,为了处理异步读写,可以使用MFC的消息机制,如消息队列和消息映射,或者使用CAsyncSocket或CAsyncMonikerFile等异步I/O类。
利用MFC开发USBHID应用涉及以下几个关键步骤:1.**设备枚举**:使用`SetupDiGetClassDevs`枚举HID设备,通过`SetupDiEnumDeviceInfo`获取设备详细信息。
2.**设备连接**:使用`CreateFile`打开设备,获得设备句柄。
3.**读写操作**:通过`DeviceIoControl`进行数据交换,读取或设置HID报告。
4.**错误处理**:适当处理可能的错误,如设备未找到、访问权限问题等。
5.**异步处理**:根据需要,使用MFC的消息机制实现异步读写。
通过以上步骤,开发者可以构建一个功能完备的MFC应用程序,实现对USBHID设备的高效控制。
在实际项目中,还可以考虑添加设备事件监听、多设备管理等功能,以提升应用的灵活性和可扩展性。
2025/10/11 10:31:51 30.04MB USB
1
OpenMV是一个开源,低成本,功能强大的机器视觉模块。
以STM32F427CPU为核心,集成了OV7725摄像头芯片,在小巧的硬件模块上,用C语言高效地实现了核心机器视觉算法,提供Python编程接口。
使用者们(包括发明家、爱好者以及智能设备开发商)可以用Python语言使用OpenMV提供的机器视觉功能,为自己的产品和发明增加有特色的竞争力。
2025/10/10 5:34:57 1.11MB AD Open M
1
AD9361驱动,可以加载到Linux内核中,自动识别为IIO设备。
2025/10/9 3:39:11 78KB AD9361 驱动 Linux内核
1
安全配置基线;
网络设备安全检查加固文档
2025/10/4 18:14:03 164KB 安全配置基线
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡