通过高频等离子体增强化学气相沉积(HFPECVD)在低温下沉积氢化非晶硅氮化物膜(SiNx:H)。
主要工作是研究等离子体频率和等离子体功率密度在确定薄膜特性(尤其是应力)中的作用。
通过傅立叶变换红外光谱(FTIR)获得有关膜中化学键的信息。
SiNx:H膜中的应力由衬底曲率测量确定。
结果表明,等离子体频率在控制SiNx:H薄膜的应力中起着重要作用。
对于以40.68MHz的等离子体频率生长的氮化硅层,观察到初始拉伸应力在400MPa-700MPa的范围内。
氮化硅膜的固有应力的测量结果表明,该应力量足够用于应变硅光子学中的膜应用。
2025/4/23 9:02:20 620KB silicon photonics; intrinsic stress;
1
一种基于K-SVD和正交匹配追踪算法(OMP)相结合的信号去噪算法。
该算法利用K-SVD算法将Gabor字典训练成能够最有效反映信号结构特征的超完备字典,然后基于训练完成的超完备字典,用OMP算法把一定数量的字典原子进行线性组合来构成原始信号,从而实现信号的去噪。
2025/4/22 3:46:23 76KB 稀疏分解 K-SVD OMP 图像处理
1
二、Matpower潮流计算结果和本人编写程序计算结果对比展示各节点电压和相角图一matpower计算得出的结果图二本人程序计算得出的结果对比图一和图二可知,两种计算方法得出的节点电压和相位角度一致。
PV节点和平衡节点注入网络的功率图三本人程序得出注入网络的功率
2025/4/18 19:38:48 293KB MATPOWER
1
L-Edit11.1win7\win832/64亲测可用;
利用计算集成电路自动设计工具软件L-EDIT实现移相掩模图形布局设计及交互式图形编辑。
2025/4/14 18:21:53 31.93MB L-Edit
1
博客中Veristand的测试工程和对应的CD工程,和文章相对应。
2025/4/14 3:53:18 150KB LabVIEW Veristand
1
做为一个从工业领域衍化而来的新名词,数字孪生城市主要是指运用数字孪生技术(一种运用物理模型、传感器更新、运行历史等数据,在虚拟空间完成对实体世界的仿真模拟过程),在网络空间创建一个与物理世界相对应的孪生城市,它以数字化为基础,对城市治理展开运营、决策。
做为一项在人工智能、量子计算、5G移动通讯、物联网等新技术下提出的新名词,数字孪生城市尽管在场景应用上虽欠缺相应的实践基础,但它的提出,对当今城市治理存在的困境必然会带来一些破解思路。
2025/4/12 8:25:42 1.2MB 数字孪生 智慧城市
1
载波跟踪环路设计是GPS接收机中的关键技术,载波环鉴别器的类型确定了跟踪环的类型,为了有效地防止因为数据跳变引起的鉴别误差,并且使其频率鉴别范围大,精度高,采用一种二阶锁频环(FLL)辅助三阶锁相环(PLL)的方法。
通过Matlab仿真载波环路比较了两种鉴频和鉴相算法的性能。
结果表明,该方法鉴别范围大,精度高,切实可行。
2025/4/11 16:33:07 164KB RF|微波
1
使用VC6.0集成开发环境初步实现了基于图片轮廓和图片颜色直方图的图像检索系统;
对于给定的例子图像,系统搜索指定目录并根据与例子图像的颜色直方图或轮廓相似性程度数值按升序排列相符合的
2025/4/11 8:26:47 44KB OpenCV 图像检索
1
1)采样电阻由电阻R₁、R₂和R₃组成。
当输出电压发生变化是,采样电阻对变化量进行采样,并传送到放大电路的反相输入端。
2)放大电路放大电路A的作用是将采样电阻送来的变化量进行放大,然后传送到调整管的基极。
3)基准电压基准电压由稳压管VDz提供,接在放大电路的同相输入端。
采样电阻与基准电压进行比较,得到的差值再由放大电路进行放大。
4)调整管调整管VT接在输入直流电压Ui与输出端的负载电阻RL之间,当输出电压Uₒ发生波动时,调整管的集电极电压产生相应的变化,是输出电压基本保持稳定。
1
压缩导出的mysql库,库名:ajing,内有6个表,一个表不带后缀的是原始数据,每一行是一个村,从省至村;
另外5个带后缀的表是相关联的,关联id为各自的行政编码,例如湖北省id为420(其实是42,数据库中省份编码均是3位数字,最后一个0是多余的),宜昌市id为4205(然后用8个0补齐就是420500000000),当阳市(我的家乡,县级市)为420582(然后用6个0补齐就是420582000000),以此类推
2025/4/6 4:27:29 5.97MB 最新全国 5级行政区
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡