基于Boost变换的蓄电池充电电路的设计,电力电子中常见的变换
1
随着电力系统的快速发展,电力系统信号分析越来越重要。
尤其在并网型电力电子装置被大量应用的背景下,对电网电压的频率和相位检测有很高的精度和实时性要求,锁相环是一种广泛应用且有效的检测方法。
本文阐述了基于双幽变换的软件锁相环(SPLL)基本原理,在Matlab/Simulink中建立了双曲变换SPLL模型,并采用平均值滤波方法滤除谐波分量,提高了暂态响应速度,增强了抗干扰能力。
分别对电网电压不平衡、频率跳变、输入电压含谐波等几种情况进行了仿真。
仿真结果表明该方法能够快速、精确地提取电网电压正负序分量、频率、相位等信息,能够为并网型电力电子装置良好运行提供保障。
关键词:锁相环;
正负序分离;
双如变换;
并网型电力电子装置
2024/4/1 15:08:26 1.15MB spll dq变换
1
在电力电子装置中的一个重要组成部分,输入连接到控制电路的PWM信号输出端,输出连接到装置各IGBT的门极和发射极,将装置中的控制电路产生的数字PWM信号进行隔离传输和电平转换和功率放大,实现控制电路对IGBT进行开通和关断动作的控制,从而实现装置的功率变换功能。
2024/3/27 18:28:31 8.58MB IGBY
1
本书每章实例均附带PSpice仿真程序,读者可以将理论计算和仿真程序相结合,进行对比学习,以便能够更加透彻地掌握电力电子学技术。
内容简介本书是原书作者在从事电力电子教学与研究的基础上编写而成的。
本书第1~7章首先介绍了SPICE语言以及PSpice软...
2024/3/5 13:35:21 40.05MB SPICE
1
摘要:介绍了晶闸管交流开关模块的结构、技术参数和应用领域,说明了模块的过电流与过电压保护的方法以及散热器的选择。
关键词:晶闸管交流开关模块;
过电流保护;
过电压保护;
散热器选择1前言自1957年发明晶闸管以来,由于它结构简单,使用方便和性能稳定可靠,因此,已大量用于国民经济各领域,为工业发展、技术进步和节约能源发挥了重大作用。
目前,晶闸管的制造工艺和应用技术已相当成熟,正向着体积更小、重量更轻、结构更紧凑、可靠性更高、内部接线电路各异和功能不同的模块化方向发展,也出现了把移相触发系统、保护系统和晶闸管芯片混合集成在同一外壳内的,所谓的各种“晶闸管智能模块”。
本文将简要介绍由常州瑞华电力电子器件有
2024/2/27 4:39:29 266KB
1
pmsm_程序近年来,在高性能全数字控制的电气传动系统中,作为电力电子逆变技术的关键,pwm技术从最初追求电压波形正弦,到电流波形正弦,再到磁通的正弦,取得了突飞猛进的发展[1]。
在众多正弦脉宽调制技术中,空间电压矢量pwm(或称svpwm)是一种优化的pwm技术,能明显减小逆变器输出电流的谐波成分及电机的谐波损耗,降低脉动转矩,且其控制简单,数字化实现方便,电压利用率高,已有取代传统spwm的趋势。
本文对空间电压矢量pwm的原理进行了深入分析,重点推导了每一扇区开关矢量的导通时间,并在ti公司生产的dsp上实现三相逆变器的控制,证明了分析的正确和可行性。
2024/2/14 8:01:22 110KB pmsm_程序
1
天津工业大学《电力电子技术》历年期末考试试卷(含答案)
2024/2/13 6:12:27 1.14MB 电学
1
完整的电力电子书籍,这是麻省理工大学的教材,希望对大家有用
2024/2/10 8:11:55 54.27MB 电力电子
1
直流双闭环控制系统的MATLAB仿真-leihanchen38.mdl为实现转速和电流两种负反馈分别作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套连接,如图所示。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;
转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理图如上图所示。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压Uc为正电压的情况标出的,并考虑到运算放大器的倒相作用。
图中还表示了两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压Uim*决定后了电流给定电压的最大值,电流调节器ACR的输出限幅电压Ucm限制电压Ucm限制了电力电子变换器的最大输出电压Udm。
2024/2/5 3:52:46 23KB matlab
1
电力电子学-电力电子变换和控制技术(陈坚,高等教育出版社)答案,有需要的拿去
2023/12/11 1:50:10 1.8MB 电力电子学 答案 陈坚
1
共 144 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡