该资源为2012-2020年暨南大学816高分子化学与物理考研真题,资源高清无水印哦!该资源为2012-2020年暨南大学816高分子化学与物理考研真题,资源高清无水印哦!
1
高性能硬件的快速发展,诸如多核CPU、高带网络、高性能SSD以及各种智能芯片,为新一代性能型全闪SDS提供了发展机遇,裸金属云存储应运而生。
全闪SDS基于全用户态设计(kernelbypass)、polling模型、专核调度策略、端到端NVMf协议,极致发挥裸金属物理性能,实现百微秒级低延迟下的千万级IOPS超高性能。
新一代性能型全闪SDS,为核心业务系统中SDS替换传统存储提供了极好的驱动力,为新兴应用提供了极佳的存储基础设施。
1
半导体物理笔记半导体物理笔记半导体物理笔记半导体物理笔记
1
open联盟TC8测试规范是行业的标准测试规范,包括物理层PMA,IOP,TCP/IP/ARP等协议一致性测试。
2025/4/21 18:55:14 7.74MB 车载以太网测试 协议一致性测试
1
群论在物理学中的应用
2025/4/21 17:43:46 6.91MB 群论 对称性
1
1、分页方式的地址换算。
具体要求:1)随机生成页面大小,但一定为2的幂,系统随机生成一个至少有10行的页表,页号、块号从0开始。
2)用户给定一个逻辑地址,首先显示此地址的页号和页内地址,然后显示是第几块,最后显示其物理地址。
2、分段方式的地址换算。
具体要求:1)由系统随机生成5个左右的段,并随机生成一个段表并显示。
2)由用户给定一个逻辑地址,包括段号和段内地址,最后显示其物理地址。
3、段页式的地址换算。
具体要求:1)先由系统随机生成5个左右的段,然后再由系统随机生成页面大小,但一定为2的幂。
然后生成段表和页表,具体内容参照课本。
2)由用户给定一个逻辑地址,包括段号和段内地址,最后显示其物理地址。
2025/4/21 13:30:54 880KB 操作系统
1
智能交通系统(ITS)已经是一个非常活跃的研究领域,是一项涉及众多组织协调合作,共同研究、开发、实施、调控的大系统。
现代系统仿真技术为智能交通系统的发展提供了更多的先进技术和分析手段。
系统仿真,是以控制论、相似原理和计算机技术为基础,借助系统模型对系统或未来系统进行实验研究的一门综合性新兴技术。
利用系统仿真技术,研究系统的运行状态及其随时间变化的过程,并通过对仿真运行过程的观察和统计,得到被仿真系统的仿真输出参数和基本特性,以此来估计和推断现有系统或未来系统的真实参数和真实性能,这个过程称为系统仿真过程。
而交通流理论既要考虑总体流动特性的宏观模型,也要考虑单一车辆行为的微观模型,是一门运用物理学和数学工具描述交通特性的科学。
研究的方法包括跟驰模型、动力学模型、动力论方法及元胞自动机方法等。
交通流仿真平台应该综合比较先进的技术来为系统仿真提供基本的的交通流理论模型和方法,且能够扩展方法,并使用想象力综合平台分析的手段和方法验证想法并且得到实验的结果,从而为某项具体实验节省费用和时间。
2025/4/20 16:49:34 19.17MB 高速公路 交通流 三维仿真 平台技术
1
介绍了一种新的非平稳信号分析方法———局部均值分解(Localmeandecomposition,简称LMD)。
LMD方法可以自适应地将任何一个复杂信号分解为若干个具有一定物理意义的PF(Productfunction)分量之和,其中每个PF分量为一个包络信号和一个纯调频信号的乘积,从而获得原始信号完整的时频分布。
本文首先介绍了LMD方法,然后将LMD方法对仿真信号进行了分析,取得了满意的效果,最后将其和经验模式分解EMD(Empiricalmodedecomposition)方法进行了对比,结果表明在端点效应、迭代次数等方面LMD方法要优于EMD方法。
2025/4/17 22:13:29 636KB 经验模式分解
1
本算法已获得满绩(1)空闲页面分为10个块组,块组编号为0,1,2,……,8,9;
(2)内存空间及其划分(界面):内存物理空间大小可选择:256Mbytes,512Mbytes;
每个页框的大小可选择:1Kbytes,2Kbytes,4Kbytes;
1
微电子器件与集成电路(IC)设计基础是一门深入探讨微电子技术核心原理的学科,它涵盖了从基本的半导体物理到复杂集成电路设计的广泛知识。
以下是对这套PPT内容的详细解读:1.**第1章:电子设备的物理基础**-半导体材料:本章将介绍半导体的基本性质,如硅(Si)和锗(Ge)等元素半导体,以及杂质掺杂的概念,如何通过掺杂N型和P型半导体来控制电子和空穴的浓度。
-电荷载体:讨论电子和空穴作为半导体中的电流载体,以及它们在电场下的移动方式。
-PN结:解释PN结的形成,它的能带结构,以及PN结的正向和反向偏置特性,包括击穿电压。
-单极晶体管:介绍BJT(双极型晶体管)和MOSFET(金属-氧化物-半导体场效应晶体管)的工作原理,包括放大作用和开关特性。
2.**第2章:半导体器件**-MOSFET的详细分析:深入讲解MOSFET的结构,包括N沟道和P沟道类型,以及它们的阈值电压、亚阈值区行为和饱和区特性。
-BJTs的运作:解释集电极、基极和发射极之间的电流关系,以及共射、共基和共集配置的放大系数。
-模拟和数字器件:区分模拟和数字半导体器件,例如运算放大器、逻辑门电路和MOS集成电路。
3.**第3章:集成电路设计基础**-集成电路制造工艺:涵盖光刻、扩散、离子注入等半导体制造步骤,以及VLSI(超大规模集成电路)制造的挑战和解决方案。
-CMOS技术:介绍互补金属氧化物半导体(CMOS)技术,它是现代数字电路的基础,包括NMOS和PMOS晶体管的互补工作原理。
-IC设计流程:概述从系统级设计到门级描述,再到布局布线的完整集成电路设计流程,包括硬件描述语言(如Verilog或VHDL)和逻辑综合。
-片上系统(SoC):讨论集成微处理器、存储器和其他功能模块的单片系统设计,及其在嵌入式系统中的应用。
这三章内容构成了微电子器件与IC设计基础的核心,涵盖了从基本理论到实际应用的关键知识点。
学习这些内容对于理解微电子技术的原理,以及进一步从事集成电路设计和半导体产业的工作至关重要。
通过这套PPT,学生和从业者可以深入理解半导体物理学、器件原理和集成电路设计的方方面面。
2025/4/15 20:51:25 6.53MB 微电子器件与IC设计基础_全套PPT
1
共 929 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡