SmartGridusingBigDataAnalytics:ARandomMatrixTheoryApproach大数据与智能电网理论与实践bigdataandsmartgridtheoryandpractice
2025/4/10 3:39:25 18.05MB 大数据 智能电网
1
自然资源局李维森局长、李成名等对于“智慧城市时空大数据平台建设的研究”,文档来自中国测绘蓝皮书
2025/4/7 8:37:23 1.98MB 时空大数据 时空信息云平
1
如何在数据压缩率和编解码效率之间找到平衡,该分享介绍Intel大数据团队在为Spark实现ISA-L(iGZIP),LZ4-IPP,ZLIB-IPP和ZSTD等针对IA硬件平台优化的算法支持,并使用基准测试集(TPC-DS/HiBench)对这些压缩编解码在Spark上的性能表现进行的详细分析和对比
2025/4/6 15:25:48 1.38MB Spark 压缩编解码
1
可从后台写循环获取上万数据,赋值到js全局变量,每次滚动显示所需分页数据,不会一次性显示大数据量导致页面滚动卡死,从ag-grid控件中获取想法,该文件可参考,ag-grid利用css3不兼容ie8,已换成别的想法支持
2025/4/1 1:02:25 4KB 表格大量数据
1
厦大数据结构考卷
2025/3/28 20:05:45 3.39MB 厦大数据结构考卷
1
该资料本人学习大数据时整理的,当中包含了一下大数据常见面试题。
主要是老师给的课件+本人在网上找的一些资料,适合不仅适合新手,也可以用于复习,还可以用于应付面试。
如有侵权,请联系删除,谢谢。
2025/3/27 13:03:50 48.47MB 大数据 面试 复习 hdaoop
1
大数据技术应用与案例解析
2025/3/26 14:54:04 12.6MB 大数据 应用 案例
1
大数据简历项目
2025/3/23 5:49:02 206KB 简历
1
了解SPSS?中处理大数据的新功能。
现在可以对SPSS分析资产轻松地进行修改,以便连接到不同的大数据来源,它们还可以在不同的部署模式(批处理或实时模式)下运行。
SPSS平台的组件现在可与IBMNetezza、InfoSphere?BigInsights?和InfoSphereStreams结合使用,以支持分析师对大数据使用强大的分析工具。
数十年来,IBMSPSS为统计人员和数据科学家提供了强大的工具。
多年来,SPSS平台已发生了演变,支持数据挖掘流程的所有阶段,包括模型开发、模型部署和模型刷新。
在过去两年,SPSS中增加了处理大数据的新功能。
本文将介绍SPSS如何与IBM大数据产品组合的3个组
2025/3/22 4:54:52 450KB 将SPSS分析技术应用于大数据
1
《大数据HBase——JavaAPI深度解析》在大数据领域,HBase作为一个分布式、列式存储的NoSQL数据库,因其高效、可扩展的特性而被广泛应用。
本资料主要围绕HBase的JavaAPI进行深入探讨,旨在帮助读者理解并掌握如何利用Java进行HBase的操作。
HBase是构建在Hadoop文件系统(HDFS)之上的,它提供了实时读写能力,适用于海量数据的存储。
其设计灵感来源于Google的Bigtable,但HBase更注重于提供高并发和低延迟的数据访问。
HBase的数据模型是基于行的,每个表由行和列族组成,列族下又包含多个列,这样的设计使得数据的存储和查询更加灵活。
在JavaAPI层面,我们首先需要了解HBase的基本操作类,如HBaseAdmin用于管理表,HTable接口用于与表交互,HTableDescriptor用于描述表的结构。
创建表时,我们需要定义表名和列族,列族下可以动态添加列。
例如:```javaHTableDescriptordesc=newHTableDescriptor(TableName.valueOf("myTable"));desc.addFamily(newHColumnDescriptor("cf"));//创建一个名为"cf"的列族```插入数据到HBase中,我们使用Put对象,将数据放入行键和列键对应的单元格中:```javaPutput=newPut(Bytes.toBytes("rowKey"));put.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"),Bytes.toBytes("value"));htable.put(put);```查询数据则通过Get对象,指定行键和列键,获取对应单元格的值:```javaGetget=newGet(Bytes.toBytes("rowKey"));get.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"));Resultresult=htable.get(get);```HBase还提供了Scan对象,用于扫描表中的多行数据。
通过设置StartRow和StopRow,我们可以指定扫描的范围;
通过addFamily和addColumn,我们可以指定扫描的列族或特定列。
```javaScanscan=newScan();scan.addFamily(Bytes.toBytes("cf"));ResultScannerscanner=htable.getScanner(scan);for(Resultres:scanner){//处理结果}```此外,HBase的JavaAPI也支持批量操作,如BulkLoadHFile,这在导入大量数据时能显著提升效率。
还有RegionServer和ZooKeeper的角色,它们在HBase集群中起着至关重要的作用,确保数据的分布和一致性。
在处理大数据时,HBase的性能优化也是一个重要话题。
例如,合理设置region的大小,避免热点问题;
使用合适的数据模型和索引策略,优化查询性能;
使用Compaction控制数据文件的合并,保持数据的整洁。
总之,HBase作为大数据存储的重要工具,其JavaAPI提供了丰富的功能,让开发者能够灵活地操作和管理大数据。
通过深入学习和实践,我们可以充分利用HBase的优势,解决大规模数据处理的挑战。
2025/3/22 0:51:17 134.67MB hbase
1
共 918 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡