本资源是本人在大学四年里设计和研究的成果,主要研究sxy飞行控制的控制方法,方案采用的是9轴mpu9150,包含3轴陀螺仪+3轴加速计+3轴地磁计,陀螺仪采用四元数+欧拉角算法解算出xyz姿态角度,采用了加权系数串级pid控制算法(内环+外环鲁棒控制)使系统更加稳定、安全、和更具鲁棒性,采用卡尔曼滤波算法滤掉和平滑滤波算法滤除高频成分和突变情况,使角度更加平滑,输出更稳定,采用数字补偿控制飞行器漂移,采用24l01无线模块远程控制飞行姿态,采用超声波和z轴加速度控制高度和定高,实践飞行的效果比较好,飞行器飞行很稳定,抗干扰强、鲁棒性强,向下或向上拉扯抗拉力强,最大角度恢复速度快,稳定时间短,最大仰角下1-2次反馈就恢复水平,本代码和控制算法仅供大家学习和参考,请勿上传到其他网站赚取积分,否则将追究责任!
2024/5/27 21:17:41 30.62MB sxy飞行 串级PID PID算法 陀螺仪
1
基于混合反馈型回声状态网络的预测算法,冯辰,崔鸿雁,随着回声状态网络(ESN)预测算法的广泛应用,算法的预测精度已经成为衡量该算法好坏的一条重要标准。
本论文提出了一种基于混合反馈�
2024/5/24 15:14:30 358KB 回声状态网络
1
STM32单片机的PID算法实例,通过PID算法控制STM32的PWM输出反馈量是PWM低通滤波后得到的AD-STM32
2024/5/18 17:27:42 484KB pid
1
Olery成立于2010年,总部位于阿姆斯特丹。
该初创公司为酒店行业提供声誉管理与媒体监控工具,帮助酒店将网络评论和社交媒体反馈转化成可执行的商业智能分析。
Olery成立最初是使用MySQL来存储(用户、合同等等)核心数据,用MongoDB来存储评论及其类似的数据(即哪些在数据丢失的情况下很容易恢复的数据)。
一开始,这样的安装运行的非常好,然而,随着公司的成长,开始遇到了各种各样的问题,尤其是MongoDB的问题居多。
其中一些问题是由于应用与数据库的交互方式而引起的,一些则是由数据库本身而产生的。
例如,某个时刻,Olery需要从MongoDB中删除一百万个文档,以后再把这些数据重新插入到Mon
2024/5/17 0:48:05 315KB 软件公司为何要放弃MongoDB?
1
基于MFC制作的一个截屏小工具,希望对您有用。
有任何意见或建议欢迎到给我反馈,我将感激不尽!我的博客:tjefferson518.blogspot.com,我的新浪微博:@tjefferson
2024/5/16 8:49:14 4.06MB 截屏 MFC 源码
1
51单片机PID算法程序由51单片机组成的数字控制系统控制中,PID控制器是通过PID控制算法实现的。
51单片机通过AD对信号进行采集,变成数字信号,再在单片机中通过算法实现PID运算,再通过DA把控制量反馈回控制源。
从而实现对系统的伺服控制。
2024/5/10 19:48:24 58KB PID算法程序
1
由于模型预测控制理论数学抽象特点明显,初涉者往往需要较长时间的探索才能真正理解和掌握,而进一步应用到具体研究,则需要更长的过程。
本书详细介绍了应用模型预测控制理论进行无人驾驶车辆控制的基础方法,结合运动规划与跟踪实例详细说明了预测模型建立、方法优化、约束处理和反馈校正的方法,给出了Matlab仿真代码和详细图解仿真步骤。
所有代码都详细提供了详尽的注解,并且融入了研究团队在本领域的研究成果。
2024/5/10 17:25:03 52.7MB 无人驾驶 车辆模型 预测控制 程序
1
对自抗扰控制器三部分组成:跟踪微分器(trackingdifferentiator),扩展状态观测器(extendedstateobserver)和非线性状态误差反馈控制律(nonlinearstateerrorfeedbacklaw)的matlab仿真
2024/5/10 17:30:54 9KB ADRC
1
随着市场对智能家居的需求增大,为此本文设计了一种多功能无线网络插座,并完成了硬件方案的系统设计和测试工作。
系统包括STC89C52控制模块、继电器控制模块、电源转换器模块和nRF401无线收发模块等。
当无线网络插座接收到家庭网络的无线服务器通过对应无线模块发送无线信号后,经过STC89C52控制器解码输出对应的控制信号以控制对应的继电器,进而实现对电器开关的控制,并在控制成功后将用电器运行状态反馈到网络服务器中。
智能无线插座,可让旧式家电被智能控制,有效的解决了家庭无线网络中旧家电的浪费问题。
1
共 400 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡