我收集到得一些人脸识别的程序和大家分享-人脸识别系统(已经建立人脸库).rar将我收集到得一些比较完整的人脸识别的资料和大家分享,由于附件大小的限制我只挑选了一些小的发上来,还有些为了减小文件,我把数据文件和人脸库等一些图片都删掉了,所以程序可能无法直接演示,需要大家自己添加一些数据文件。
人脸库网上都有,大家可以自己下载。
程序还是不错的,大家可以参考有一下一些资料完整的人脸识别系统(已经建立人脸库)NMFs算法用于实现基于人脸局部特征的人脸识别OPENGL人脸识别使用基于LDA算法的人脸识别程序国外著名大学成功的人脸检测识别算法中的眨眼检测用HMM实现的人脸识别及其文档经过调试完整的人脸检测系统源码LinearDiscriminantAnalysis算法
2024/3/15 14:16:57 440KB matlab
1
2021.OpenCV+androidstudio(SDK方式)实现人脸检测+人脸区域自动截图保存
2024/3/8 11:37:13 256.31MB android studio android JAVA
1
SeetaFace2采用标准C++开发,全部模块均不依赖任何第三方库,支持x86架构(Windows、Linux)和ARM架构(Android)。
SeetaFace2支持的上层应用包括但不限于人脸门禁、无感考勤、人脸比对等。
编译简介2.1编译依赖GNUMake工具GCC或者Clang编译器CM2.2linux和windows平台编译说明linux和windows上的SDK编译脚本见目录craft,其中craft/linux下为linux版本的编译脚本,craft/windows下为windows版本的编译脚本,默认编译的库为64位Release版本。
linux和windows上的SDK编译方法:打开终端(windows上为VS2015x64NativeToolsCommandPrompt工具,linux上为bash),cd到编译脚本所在目录;
执行对应平台的编译脚本。
linux上example的编译运行方法:cd到example/search目录下,执行make指令;
拷贝模型文件到程序指定的目录下;
执行脚本run.sh。
windows上example的编译运行方法:使用vs2015打开SeetaExample.sln构建工程,修改Opencv3.props属性表中变量OpenCV3Home的值为本机上的OpenCV3的安装目录;
执行vs2015中的编译命令;
拷贝模型文件到程序指定的目录下,运行程序。
2.3Android平台编译说明Android版本的编译方法:安装ndk编译工具;
环境变量中导出ndk-build工具;
cd到各模块的jni目录下(如SeetaNet的Android编译脚本位置为SeetaNet/sources/jni,FaceDetector的Android编译脚本位置为FaceDetector/FaceDetector/jni),执行ndk-build-j8命令进行编译。
编译依赖说明:人脸检测模块FaceDetector,面部关键点定位模块FaceLandmarker以及人脸特征提取与比对模块FaceRecognizer均依赖前向计算框架SeetaNet模块,因此需优先编译前向计算框架SeetaNet模块。
1
基于mtcnn方法实现人脸对齐,人脸检测,c++代码实现。
2024/3/1 13:07:24 7KB 人脸识别 人脸对齐 mtcnn
1
这是我利用5000张正样本4673张负样本训练的XML,识别率比opencv默认提供的XML低一点,但是误检率比opencv提供的要低很多
2024/2/23 17:08:23 40KB 人脸检测XML
1
40M比较大,差点不能上传,绝对的好东西。
人脸识别是图像处理领域的一个重要技术,是该领域非常活跃的研究课题。
它是基于人类脸部特征信息进行身份识别的一种模式识别技术。
由于人脸图像的特殊性,要使这项技术完全成熟并能够应用到现实生活中,还需要有很多亟待解决的问题,因此,人脸识别研究具有很大的挑战性,一直是模式识别领域的研究热点。
人脸识别的过程主要分为三个阶段:人脸检测、特征提取以及分类识别。
针对目前常用的人脸识别方法中存在着一些缺陷,如计算量大,图像受光照、表情、姿态的影响较大等问题,本文提出基于图像处理的方法,获得更好的识别效果。
2.主要内容(1)熟悉目前常用的人脸识别方法;
(2)了解图像处理中应用于模式识别的方法,;
(3)选定用于人脸识别的图像处理方法;
(4)人脸特征提取;
(5)人脸的分类识别;
2024/2/20 15:41:42 39.67MB 人脸识别技术 嵌入式 c语言
1
针对口罩检测,进行调研,包括了分类器的设计,人脸检测的设计。
其中主要分为两阶段,先是人脸检测,然后将检测到的人脸,进行二分类,标签为戴口罩,不戴口罩。
包括了pytorch的代码,ppt的讲解,技术文档。
人脸识别是MTCNN,然后分类可以自己训练,我采用的是ResNet-18.
1
具体可以看我的博文,博文名字跟资源名字是一样的
2024/2/16 2:30:52 22.9MB android opencv vlc rtsp
1
基于OpenCV的人脸检测系统设计与实现基于OpenCV的人脸检测系统设计与实现基于OpenCV的人脸检测系统设计与实现
1
人脸检测工具,人眼检测工具,训练好的人眼文件haarcascade_eye_tree_eyeglasses.xml,配合opencv使用,进行人脸检测
2024/1/30 16:52:17 588KB 人眼检测
1
共 161 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡