在Android设备上使用NCNN图像分类的demo,是一个Android项目
2024/8/31 5:14:09 15.97MB ncnn android 图像分类
1
前言:软件工程概论是软件工程这个阶段学习的第一课,按照习惯应该是这门课最提纲挈领的开篇。
所以这节课很是重要,就像你去四川旅游,它就是你的地图让你事先略知一二。
不需要很清楚,它会让你不迷路!纲领五个块:软件基础——>软件分类——>软件发展阶段——>软件过程——>软件工程过程——>软件的生存期软件的分类软件的发展阶段软件的发展总是依赖于硬件的发展,每个阶段的硬件水平不同导致软件开发的水平不一软件的生存期整个软件从开发诞生到废弃的过程。
重点是开发的步骤,到软件工程的开发阶段每个步骤都会产生相应的文档并经过严格的评审才能执行下一步的开发。
软件工程的理念使得整个软件开发过程规范化、标准化、甚至模型化,在
2024/8/30 12:56:48 1MB 软件工程
1
该代码用于图像分类,分割识别。
其中包括特征提取。
图像处理,把一幅图片中不同类型的水果进行自动分类,识别
2024/8/29 12:04:03 4.01MB 图像识别 图像分类
1
完整的PDF版 第1章绪论  1.1从生物神经网络到人工神经网络  1.2人工神经网络的发展史  1.3人工神经网络的应用  1.4生物神经元  1.5人工神经元模型  1.6神经网络的结构  1.7神经网络的特点  1.8神经网络的学习方式  第2章MATLAB神经网络工具箱中的神经网络模型  2.1MATLAB工具箱的神经元模型  2.2MATLAB工具箱中的神经网络结构  2.3MATLAB神经网络工具箱中的网络对象及其属性  2.3.1网络对象属性  2.3.2子对象属性  第3章感知器  3.1感知器神经元及感知器神经网络模型  3.2感知器的学习  3.3感知器的局限性  3.4单层感知器神经网络的MATLAB仿真程序设计  3.5多层感知器神经网络及其MATLAB仿真  3.6感知器应用于线性分类问题的进一步讨论  第4章线性神经网络  4.1线性神经网络模型  4.2线性神经网络的学习  4.3线性神经网络的MATLAB仿真程序设计  4.3.1线性神经网络设计的基本方法  4.3.2线性神经网络的设计例程  第5章BP网络  5.1BP神经元及BP网络模型  5.2BP网络的学习  5.2.1BP网络学习算法  5.2.2BP网络学习算法的比较  5.3BP网络泛化能力的提高  5.4BP网络的局限性  5.5BP网络的MATLAB仿真程序设计  5.5.1BP网络设计的基本方法  5.5.2BP网络应用实例  第6章径向基网络  6.1径向基网络模型  6.2径向基网络的创建与学习过程  6.3其他径向基神经网络  6.4径向基网络的MATLAB仿真程序设计  第7章竞争型神经网络  7.1竞争型神经网络模型  7.2竞争型神经网络的学习  7.3竞争型神经网络存在的问题  7.4竞争型神经网络的MATLAB仿真程序设计  第8章自组织神经网络  8.1自组织特征映射神经网络模型  8.2自组织特征映射神经网络的学习  8.3学习向量量化神经网络模型  8.4学习向量量化神经网络的学习  8.5LVQ1学习算法的改进  8.6LVQ神经网络的MATLAB仿真程序设计  第9章反馈型神经网络  9.1Elman神经网络  9.2Hopfield神经网络  9.3反馈神经网络的MATLAB仿真程序设计  第10章图形用户界面  10.1图形用户界面简介  10.2图形用户界面应用示例  10.3图形用户界面的其他操作  第11章Simulink  11.1Simulink神经网络仿真模型库简介  11.2Simulink应用示例  第12章自定义网络  12.1自定义神经网络  12.1.1自定义神经网络的创建  12.1.2自定义神经网络的初始化、训练与仿真  12.2自定义函数  附录A神经网络工具箱函数  参考文献
1
利用分类器实现驾驶员的实时疲劳检测经本人亲测很好用请放心下载
2024/8/29 6:04:10 10.79MB 驾驶员 疲劳检测 疲劳检测 疲劳检测
1
这是一个后台管理系统的模板,显示出了所有的前端页面并实现了部分功能;
使用css、js、Highcharts等一些技术实现显示框拉缩,管理分类、报表等功能
2024/8/28 20:07:53 34.82MB 后台管理
1
用matlab开发的说话人识别算法。
用到了GMM,DTW等分类算法,还用到了MFCC特征抽取算法等用matlab开发的说话人识别算法。
用到了GMM,DTW等分类算法,还用到了MFCC特征抽取算法等
2024/8/27 7:09:02 10.61MB matlab 说话人识别 speaker recognition
1
自然语言处理自然语言处理-使用机器学习对IMDB电影评论进行情感分析。
情感分析:这是对通过各种算法定义和分类一段文本所指定的观点或表达的过程的总体定义,以便正面或负面地评估作家或帖子对特定主题的态度。
通常,全球范围内的情绪分析概念也涉及中性意见,但我不会考虑到这一点。
情感分析通常被视为对全球推文的研究。
此外,可以通过人们对电影,产品和公司的看法来进行情感分析。
我将对数据集中的批评进行情绪分析,其中包含对IMDB中电影的批评。
我将尝试显示重要事项的答案,例如我们可以使用哪些分类器,可以达到更高的准确性,可以执行哪种类型的向量转换以及字比对我来说更有用。
要求库版本脾气暴躁的1.18.4熊猫1.0.3Nltk3.4.5斯克莱恩0.23.1方法逻辑回归分类器决策树分类器随机森林分类器K邻居(KNN)分类器TF-IDF矢量化数据集可以从单独下载
2024/8/26 9:32:36 390KB JupyterNotebook
1
Vc++的程序,简单的bp算法实现数据分类。
2024/8/25 10:56:13 22KB bp classification
1
该语料主要用于识别出整条微博所表达的情绪,不是简单的褒贬分类,而是涉及到多个细粒度情绪类别(例如悲伤、忧愁、快乐、兴奋等),属于细粒度的情感分类问题。
情感分析资源大全:http://blog.csdn.net/qq280929090/article/details/70838025
2024/8/25 4:28:50 9.15MB 情感分析
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡