PID电机控制目录第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3.9带滤波器的PID控制仿真1.3.10不完全微分PID控制算法及仿真1.3.11微分先行PID控制算法及仿真1.3.12带死区的PID控制算法及仿真1.3.13基于前馈补偿的PID控制算法及仿真1.3.14步进式PID控制算法及仿真第2章常用的PID控制系统2.1单回路PID控制系统2.2串级PID控制2.2.1串级PID控制原理2.2.2仿真程序及分析2.3纯滞后系统的大林控制算法2.3.1大林控制算法原理2.3.2仿真程序及分析2.4纯滞后系统的Smith控制算法2.4.1连续Smith预估控制2.4.2仿真程序及分析2.4.3数字Smith预估控制2.4.4仿真程序及分析第3章专家PID控制和模糊PID控制3.1专家PID控制3.1.1专家PID控制原理3.1.2仿真程序及分析3.2模糊自适应整定PID控制3.2.1模糊自适应整定PID控制原理3.2.2仿真程序及分析3.3模糊免疫PID控制算法3.3.1模糊免疫PID控制算法原理3.3.2仿真程序及分析第4章神经PID控制4.1基于单神经元网络的PID智能控制4.1.1几种典型的学习规则4.1.2单神经元自适应PID控制4.1.3改进的单神经元自适应PID控制4.1.4仿真程序及分析4.1.5基于二次型性能指标学习算法的单神经元自适应PID控制4.1.6仿真程序及分析4.2基于BP神经网络整定的PID控制4.2.1基于BP神经网络的PID整定原理4.2.2仿真程序及分析4.3基于RBF神经网络整定的PID控制4.3.1RBF神经网络模型4.3.2RBF网络PID整定原理4.3.3仿真程序及分析4.4基于RBF神经网络辨识的单神经元PID模型参考自适应控制4.4.1神经网络模型参考自适应控制原理4.4.2仿真程序及分析4.5基于CMAC(神经网络)与PID的并行控制4.5.1CMAC概述4.5.2CMAC与PID复合控制算法4.5.3仿真程序及分析4.6CMAC与PID并行控制的Simulink仿真4.6.1Simulink仿真方法4.6.2仿真程序及分析第5章基于遗传算法整定的PID控制5.1遗传算法的基本原理5.2遗传算法的优化设计5.2.1遗传算法的构成要素5.2.2遗传算法的应用步骤5.3遗传算法求函数极大值5.3.1遗传算法求函数极大值实例5.3.2仿真程序5.4基于遗传算法的PID整定5.4.1基于遗传算法的PID整定原理5.4.2基于实数编码遗传算法的PID整定5.4.3仿真程序5.4.4基于二进制编码遗传算法的PID整定5.4.5仿真程序5.5基于遗传算法摩擦模型参数辨识的PID控制5.5.1仿真实例5.5.2仿真程序第6章先进PID多变量解耦控制6.1PID多变量解耦控制6.1.1PID解耦控制原理6.1.2仿真程序及分析6.2单神经元PID解耦控制6.2.1单神经元PID解耦控制原理6.2.2仿真程序及分析6.3基于DRNN神经网络整定的PID解耦控制6.3.1基于DRNN神经网络参数自学习PID解耦控制原理6.3.2DRNN神经网络的Jacobian信息辨识6.3.3仿真程序及分析第7章几种先进PID控制方法7.1基于干扰观测器的PID控制7.1.1干扰观测器设计原理7.1.2连续系统的控制仿真7.1.3离散系统的控制仿真7.2非线性系统的PID鲁棒控制7.2.1基于NCD优化的非线性优化PID控制7.2.2基于NCD与优化函数结合的非线性优化PID控制7.3一类非线性PID控制器设计7.3.1非线性控制器设计原理7.3.2仿真程序及分析7.4基于重复控制补偿的高精
2024/7/16 13:07:56 5.56MB PID
1
MaxonCINEMA4DStudioR22是由德国Maxon设计公司开发的一款高效、快速、稳定和易用的专业三维设计工具,包含GPU渲染器Prorender、生产级实时视窗着色、超强破碎、场景重建等诸多新功能。
MaxonCINEMA4DStudioR22提供了优秀工具和诸多提升,你可立即将其投入工作并一瞥未来的根基。
设计师因其快速、简单、易用的工作流程,以及坚如磐石的稳定性而选择MaxonCINEMA4DStudioR22,同时22可以让你的工作流程更加快速和可靠,新特性也会让你的视野变得更加开阔。
MaxonCINEMA4DStudioR19中文版MaxonCINEMA4DStudioR22中文版今日的工具,明日的技术Cinema4DRelease22提供了优秀工具和诸多提升,你可立即将其投入工作并一瞥未来的根基。
设计师因其快速、简单的工作流程,以及坚如磐石的稳定性而选择Cinema4D,同时Release19可以让你的工作流程更加快速和可靠,新特性也会让你的视野变得更加开阔。
工作流程Cinema4D快速简单的工作流程总是让加快设计速度变得简单。
Release19的准渲染视窗和其他极佳的工作流程改进,会让你比以往更快地准备创意稿给客户审批。
视窗新基于物理的视窗具备实时反射和景深你所看到的景深和屏幕空间反射是实时的渲染结果,可以更简单精准的对地面、灯光和反射进行可视化的设置。
Release19除了屏幕空间环境吸收和实时置换以外,还添加了基于屏幕空间的反射和OpenGL景深效果。
开启OpenGL观察看起来很好,你可以用它来输出新支持的原生MP4作为预览渲染,直接给客户审批。
LOD(细节级别)对象使用新的LOD对象可最大程度提升视窗或渲染速度,创建新类型的动画或准备优化游戏资源。
你可以根据屏幕大小、摄像机距离和其他因素自动简化对象和层级结构。
直观的新界面元素让定义和管理LOD设置更简单,LOD能够通过导出FBX用于市面上主流的游戏引擎。
新媒体核心作为我们的核心现代化工作的一部分,Cinema4D支持图像、视频和音频的格式已经完全重写了,速度和内存效率得到了增强。
除了QuickTime外Cinema4D现在本地支持MP4,比以往更容易提供预览渲染、视频纹理或运动跟踪的画面。
所有导入和导出的格式都比以往更加全面且功能强大。
交换格式更新通过FBX和Alembic格式导出LOD和选择对象。
Alembic文件新支持的次帧插值可进行Re-time并渲染准确的运动模糊。
新功能高亮显示通过高亮显示新功能可快速识别R19、R18的新特性或特定的教学。
分裂更加简单泰森分裂可以简单的进行程序化分裂对象–在Release19你可以控制动力学与连接器,将碎片粘合在一起,添加裂缝和更多的细节。
球型摄像机渲染”虚拟“现实R19提供了渲染和体验渲染的新方法–利用强大的GPU进行快速、好看的OpenGL预览,或使用ProRender进行基于物理的最终高质量渲染。
准备加入虚拟现实革命?使用R19的球形相机轻松渲染360°VR视频。
释放你显卡的力量来创建物理上精确的最终渲染。
AMD的RadeonProRender技术无缝集成到R19中,支持Cinema4D的标准材质、灯光和摄像机。
无论你是在最新的Mac系统中使用强大的AMD芯片,还是在Windows中使用NVIDIA和AMD显卡,你都可以享受跨平台、深度集成的解决方案,具有快速、直观的工作流程。
交互式渲染将ProRender附加到任何视窗,并像其他视窗一样使用它。
你可以在重新排列物体、调整相机、调整材质和照明时获得即时反馈。
进程式渲染整个图像,或在高分辨率渲染时使用区块式渲染以更好地进行内存管理。
ProRender可完全使用你系统中所有的显卡,无论你是使用具有多张Radeon的MacPro,还是具有AMD或NVIDA卡的Windows系统。
深入集成使用Cinema4D的材质、灯光和摄像机。
”萤火虫“滤镜消除路径追踪算法中常见的坏像素。
R20中的ProRender是产品可视化和其他类型渲染的绝佳选择,但当然这只是管中窥豹,ProRender最终将提供更多功能,并更深入地集成在将来的Cinema4D版本中。
PBR工作流程新PBR材质和灯光选项包含了基于物理渲染工作流的理想默认值。
紧跟现今趋势,为YouTube、Facebook、Oculus或Vive渲染立体360°VR视频。
新媒体核心所有的格式都会在新媒体核心中导入和渲染使用GIFs和MP4s作为纹理直接渲染为MP4、DDS和增强OpenEXR。
2024/7/15 22:43:35 348.3MB 三维建模渲染工具
1
2018修复版,不报毒,已去后门,100%安全!此源码已对接云支付和码支付接口(随意切换)!加固型后台主要修改:1,登陆增加安全密码2,可以修改用户名3,修改新密码增加旧密码验证更新记录:6月8日:增加码支付接口(可以使用微信,即时到账无风险)5月29日:1,登陆增加安全密码2,可以修改用户名3,修改新密码增加旧密码验证5月12日:1,去除后台支付接口设置改成直接在代码中修改(这个很重要)2,去除后台上传图片功能(防止上传病毒文件)5月3日:1,优化手机版页面(原手机版两边间距太大)2,将所有外链js文件下载到源码里(这个很重要)3,去除后台一个病毒文件特别注意:自动发卡源码的现有第三方支付接口是免费对接使用,若此第三方支付接口出现问题,跟自动发卡源码无关!
2024/7/15 10:28:56 32.49MB 自动发卡平台
1
带中文注释可成功编译运行的Linux0.11+Bochs2.62实验环境说明此注释以网上获得的“linux带中文注释的0.11版本”为基础,对照赵炯博士《Linux内核完全注释(0.11)》V3.0版(http://oldlinux.org/download/clk011c-3.0.pdf)编辑而成。
作为对赵博士感谢,以及对Linux初学者的回馈,特发布在CSDN上。
此注释可以在http://oldlinux.org/Linux.old/bochs/提供的Linux-0.11-devel-XXXXXX实验环境下正确编译成功,使用:"makedisk"命令重启Bochs虚拟机后,新编译源码直接生效,便于学习者直接阅读源码,直接进行实验。
注意事项:1、为了使注释版与实验环境上的Linux0.11内核保持一致,达到对应文件可以互换的目的,与Linux0.11原始版本相比,加入了15个系统调用函数(参见include/Linux/sys.h第78-92行。
赵博士原书没有这部分注释,我不敢班门弄斧),其它相关的文件加入了相应的定义。
新加入的代码只有函数体定义,没有具体实现,对其它原始代码没有改变、没有影响。
2、键盘定义改成了美式键盘(原始代码中是芬兰键盘,会导致个别键出问题,调试的时候我曾被迷糊了好久,以为自己把程序搞乱了)。
3、把网上VC版的注释统一改成了“/**/”格式的注释。
经测试,在Linux0.11实验环境中(gcc1.40),只有标准C注释语法可以正常编译。
4、由于《Linux内核完全注释(0.11)》原书版本更新的原因,注释中提到的图、表可能与V3.0版书中不一致。
5、由于代码中加入注释,代码行号发生变化,注释中提到的代码行号会出现不一致,建议对照3.0版查询对应内容。
6、实验方法:请先安装附带的Bochs2.62版安装包,双击Test.bxrc即可启动实验系统,执行命令:sht,即可完成对linuxcn的编译。
7、linux目录中是此实验系统中/usr/src/linux提取出来的不含中文注释的linux0.11源码(此版本比原始的0.11版多15个系统调用函数),linuxcn是加入了中文注释的源码。
8、diskb.img是实验系统与Windows环境下进行文件交换的1.44M软盘映像,执行脚本命令"sht"时会自动从此映像中读取linux.tar、linuxcn.tar包,解包并编译,编译结果在:/usr/root/zw/linuxcn目录下。
为了方便文件交换,建议使用7zip为压缩/解压缩工具(7zip可以直接生成tar包),用WinImage实现Windows环境与软件映像交换文件。
9、实验系统下.profile中加入了几个命令,请读者注意。
10、若实验环境的启动盘被破坏,请用压缩包中的bootimage-0.11-hd覆盖对应文件即可。
11、若实验环境的要命文件系统被破坏,请用压缩包中的hdc-0.11-new.img覆盖对应文件即可。
2014-5-4cyfx2288
2024/7/14 20:51:11 10.28MB 中文注释 成功编译 linux0.11 实验环境
1
色彩调度器列出大量文件,从CIFS中移动文件,AI评分和在CIFS上排序等操作都很缓慢。
因此,它们与实时文件看门狗分开。
Lister,mover,scorer和sorter可以分别用于创建完全异步的管道。
或者,为了简单起见,我们可以将移动器,计分器和分类器组合为一个工作器。
初始化初始化数据库pythoncreate_sql_tables.py创建调度程序路径sudomkdir/media/schedulersudochownvoyager.voyager/media/schedulermkdir./tmp启动管道condaactivatechromo-schedulernohuppythonlister.py>lister.log&nohuppythonscheduler.py>scheduler.log&nohup
2024/7/14 16:49:48 667KB Python
1
虽然本视频是专门为小白量身打造,但是课程在每一个知识点上进行了很大的延伸,深度完全完胜三年工作经验的程序员。
为您以后的发展奠定坚实的基础。
2024/7/14 7:17:14 834KB java
1
pacs影像浏览器(64位),可以浏览所有dicom文件,对图片可以进行明暗度调整、进行锐度和钝化调整,完全绿色免安装,解压直接可以使用。
医疗影像不需要刻盘附带专用浏览工具,直接可以浏览。
2024/7/10 12:31:05 5.68MB pacs dicom 绿色 免安装
1
原作者Prof.F.Dellsperger的网站:http://www.fritz.dellsperger.net/Downloads/SetupSmithV3.10.ziphttp://www.fritz.dellsperger.net/Downloads/SetupSmithV3.10.zip如果您只需要一个授权文件,本下载档里面有。
SmithV3.10***************OverviewThesoftwareisdividedintwoparts:1.Smith-ChartDiagramFeatures:Matchingladdernetworkswithcapacitors,inductors,resistors,serieRLC,parallelRLC,transformers,serielinesandopenorshortedstubsFreesettablenormalisationimpedancefortheSmithchartCirclesandcontoursforstability,noisefigure,gain,VSWRandQEditelementvaluesafterinsertionImportdatapointsfromS-parameterfilesUndo-undRedo-FunctionSaveandloaddesignsSavenetlistPrintSmithchart,schematicandcommentsCopytoclipboardfordocumentationpurposesSetcolorsforSmithchart2.S-PlotFeatures:ReadS-Parameter-FilesinTouchstone®-FormatGraphicaldisplayofs11,s12,s21ands22GraphicaldisplayandlistingofMAG(maximumoperatingpowergain)andMSG(maximumstablegain)ConvertandexportS-ParametertonormalizedorunnormalizedH-,Z-,Y-orA-ParametersinTouchstone®-Formatfiles.Exports11ors22toSmith-ChartPrintallgraphicsorlistingsSystemrequirements:Windows
2024/7/8 7:23:12 6.36MB 史密斯圆图 Smith V3.10 完全
1
一本学习matlab新版本的好书,详细清晰,700页,已压缩到最小,还是超过上传门限,故分成上下两部分上传
2024/7/7 14:24:03 40.14MB Matlab R2014a
1
网络课程资源经RichardNg许可普通教师指导:Github-所有课程内容的一个仓库降价训练上课前务必复习功课。
教师应仔细阅读课程计划和课程的其他材料,然后针对自己想如何使用内容制定自己的计划。
他们应该在与导师的每周复习课中复习它以及对内容有任何疑问。
老师也不应该害怕说他们什么都不做:可以在线查找它,如果不能解决,则可以在每周一次的指导中与老师进行讨论。
3次重复:第一个迭代是确保您了解到底发生了什么并且可以重复发生,您是否了解函数,循环,getter,setter和构造方法?您不会理解,因为您将需要继续参考您的上一次尝试,因此需要再进行两次。
第二次迭代是再次执行相同的项目,但是这次完全不参考旧代码。
这与记忆无关。
这是关于了解下一步要做什么以及需要使用什么工具在代码中打通以到达那里并知道如何做到这一点……嗯,有点记住很方便,但是在某些
2024/7/7 4:49:48 27KB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡