针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。
以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。
最初采用支持向量机分类器进行分类。
实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。
2019/5/1 5:13:11 253KB 分类算法
1
结合投影与近邻操作的支持向量快速挑选方法
2015/8/8 15:21:25 1.5MB 研究论文
1
细粒度分析学科领域热点主题发展脉络并对利用机器学习算法对未来发展趋势进行准确预测研究。
[方法/过程]提出一种基于机器学习算法的研究热点趋势预测方法与分析框架,以基因工程领域为例利用主题概率模型识别WOS核心集中论文摘要数据研究热点主题并进行主题演化关联构建,然后选取BP神经网络、支持向量机及LSTM模型等3种典型机器学习算法进行预测分析,最初利用RE指标和精准度指标评价机器学习算法预测效果并对基因工程领域在医药卫生、农业食品等方面研究趋势进行分析。
[结果/结论]实验表明基于LSTM模型对热点主题未来发展趋势预测准确度最高,支持向量机预测效果次之,BP神经网络预测效果较差且预测稳定性不足,同时结合专家咨询和文献调研表明本文方法可快速识别基因领域研究主题及发展趋势,可为我国学科领域大势研判和架构调整提供决策支持和参考
2020/2/19 19:04:15 1.69MB 机器学习
1
本代码用C言语进行编程,可以计算矩阵的特征值和相应的特征向量。
2016/8/24 4:47:08 247KB C语言 特征值 特征向量
1
对文本进行聚类,文本预处理-->构造特征向量-->聚类,紧缩包内含有实验用语料
2022/9/7 14:25:21 685KB 5.1
1
支持向量机的相关经典案例,里面包含线性核函数和非线性核函数,另外还有实例:支持向量机手写数字识别;
内含测试集训练集、代码源文件及正文,可直接运行(需安装numpy和matplotlib)
1
ISCAS89所包含的经典电路.v文件,为学习毛病诊断,测试向量研究的学者提供实验平台。
您会发现很多论文急于次作为实验,如:《时序电路测试向量融合算法》
2022/9/6 5:53:16 1011KB ISCAS89 电路.v文件
1
从现代数学,尤其是模的观点来重新审视与认识线性代数,讨论了向量空间、线性变换,在着重研讨了主理想整环上的模及其分解后,来重新理解向量空间在线性算子作用下的分解,使读者从高一个层次上来认识线性代数。
Latex重排可复制最完整最高清
2022/9/6 1:50:30 1007KB 线性代数 科学出版社
1
支持向量机是数据挖掘中的一个新方法。
支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科。
目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段。
希望《数据挖掘中的新方法——支持向量机》能促进它在我国的普及与提高。
《数据挖掘中的新方法——支持向量机》对象既包括关心理论的研究工作者,也包括关心应用的实际工作者。
对于有关领域的具有高等数学知识的实际工作者,略去书中的某些理论部分,仍能对支持向量机的本质有一个概括的理解,从而用它解决自己的问题。
《数据挖掘中的新方法——支持向量机》适合高等院校高年级学生、研究生、教师和相关科研人员及相关领域的实际工作者使用。
序言符号表第1章最优化问题及其基本理论1·1最优化问题1·2最优性条件1·3对偶理论1·4注记参考文献第2章求解分类问题和回归问题的直观途径2·1分类问题的提出2·2线性分类学习机2·3支持向量分类机2·4线性回归学习机2·5支持向量回归机2·6注记参考文献第3章核3·1描述相似性的工具——内积3·2多项式空间和多项式核3·3Mercer核3·4正定核3·5核的构造3·6注记参考文献第4章推广能力的理论估计4·1损失函数和期望风险4·2求解分类问题的一种途径和一个算法模型4·3VC维4·4学习算法在概率意义下的近似正确性4·5一致性概念和关键定理4·6结构风险最小化4·7基于间隔的推广估计4·8注记参考文献第5章分类问题5·1最大间隔原则5·2线性可分支持向量分类机5·3线性支持向量分类机5·4支持向量分类机5·5ν-支持向量分类机(ν-SVC)5·6ν-支持向量分类机(ν-SVC)和C-支持向量分类机(C-SVC)的关系5·7多类分类问题5·8一个例子5·9注记参考文献第6章回归估计6·1回归问题6·2ε-支持向量回归机6·3ν-支持向量回归机6·4ε-支持向量回归机(ε-SVR)与ν-支持向量回归机(ν-SVR)的关系6·5其他方式的支持向量回归机6·6其他方式的损失函数6·7一些例子6·8注记参考文献第7章算法7·1无约束问题解法7·2内点算法7·3求解大型问题的算法7·4注记参考文献第8章应用8·1模型选择问题8·2分类问题的线性分划中的特征选择8·3模型选择8·4静态图像中球的识别8·5自由曲面的重建问题8·6应用简介8·7核技巧的应用8·8注记参考文献附录A基础知识A·1基本定义A·2梯度和Hesse矩阵A·3方向导数A·4Taylor展开式A·5分离定理附录BHilbert空间B·1向量空间B·2内积空间B·3Hilbert空间B·4算子、特征值和特征向量附录C概率C·1概率空间C·2随机变量及其分布C·3随机变量的数字特征C·4大数定律附录D鸢尾属植物数据集英汉术语对照表
2022/9/5 18:46:11 7.74MB 数据挖掘、支持向量机.pdf
1
《模式分类》(原书第2版)的第1版《模式分类与场景分析》出版于1973年,是模式识别和场景分析领域奠基性的经曲名著。
在第2版中,除了保留了第1版的关于统计模式识别和结构模式识别的次要内容以外,读者将会发现新增了许多近25年来的新理论和新方法,其中包括神经网络、机器学习、数据挖掘、进化计算、不变量理论、隐马尔可夫模型、统计学习理论和支持向量机等。
作者还为未来25年的模式识别的发展指明了方向。
书中包含许多实例,各种不同方法的对比,丰富的图表,以及大量的课后习题和计算机练习。
2022/9/5 5:49:52 17.09MB 模式识别
1
共 608 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡