纠错:上次资源是两个季度的购物篮信息,不是两年的信息,特此更正!现重新上传本资源。
productList是商品的详单,productAttribute是商品相关属性。
brandList是品牌的详单,brandAttribute是品牌相关属性。
两个sale文件是两季度的购物栏数据(已经预处理好)。
可用于关联分析相关算法的学习。
2024/2/26 14:24:18 454KB 数据挖掘 关联分析
1
UA-DETRAC车辆检测数据集官网上不去或者从官网下载速度非常慢,现通过百度云分享,方便下载。
xml文件也已经将标注区域提取成txt文件
2024/2/24 1:47:12 71B UA-DETRAC 车辆检测 数据集
1
对IRIS数据集进行协方差分析,降维,二维显示分类。
2024/2/23 22:53:16 92KB Iris PCA
1
财新网2014年3月数据集
2024/2/23 18:39:50 34.53MB 1
1
机器学习领域一个非常重要理论就是贝叶斯理论,本文就是一篇关于使用朴素贝叶斯分类器来进行多维数据分类的学习使用文档,由于使用latex进行排版,所以就直接上传PDF文档了,如有问题可以在CSDN上私信我,多谢批评指正。
2024/2/23 15:46:48 153KB ROC 朴素贝叶斯分 wine数据
1
深度学习入门代码,可以实现数据集的训练,确定参数,然后固定参数,完成训练
2024/2/21 15:19:42 661B deep learnin
1
高光谱遥感影像分类数据集,可用于高光谱遥感影像分类研究,尤其在深度学习中十分常用,包括Botswana、IndianPines、PaviaUniversity等。
2024/2/21 15:58:24 349.65MB 深度学习 高光谱遥感影像分类 数据集
1
火焰数据集图片以及xml文件,两者相互匹配,可以通过深度学习keras-yolo3框架直接训练成火焰模型。
2024/2/20 0:33:26 3.75MB 人工智能
1
著名的Netflix智能推荐百万美金大奖赛使用是数据集.因为竞赛关闭,Netflix官网上已无法下载.Netflixprovidedatrainingdatasetof100,480,507ratingsthat480,189usersgaveto17,770movies.Eachtrainingratingisaquadrupletoftheform.TheuserandmoviefieldsareintegerIDs,whilegradesarefrom1to5(integral)stars.[3]Thequalifyingdatasetcontainsover2,817,131tripletsoftheform,withgradesknownonlytothejury.Aparticipatingteam'salgorithmmustpredictgradesontheentirequalifyingset,buttheyareonlyinformedofthescoreforhalfofthedata,thequizsetof1,408,342ratings.Theotherhalfisthetestsetof1,408,789,andperformanceonthisisusedbythejurytodeterminepotentialprizewinners.Onlythejudgesknowwhichratingsareinthequizset,andwhichareinthetestset—thisarrangementisintendedtomakeitdifficulttohillclimbonthetestset.Submittedpredictionsarescoredagainstthetruegradesintermsofrootmeansquarederror(RMSE),andthegoalistoreducethiserrorasmuchaspossible.Notethatwhiletheactualgradesareintegersintherange1to5,submittedpredictionsneednotbe.Netflixalsoidentifiedaprobesubsetof1,408,395ratingswithinthetrainingdataset.Theprobe,quiz,andtestdatasetswerechosentohavesimilarstatisticalproperties.Insummary,thedatausedintheNetflixPrizelooksasfollows:Trainingset(99,072,112ratingsnotincludingtheprobeset,100,480,507includingtheprobeset)Probeset(1,408,395ratings)Qualifyingset(2,817,131ratings)consistingof:Testset(1,408,789ratings),usedtodeterminewinnersQuizset(1,408,342ratings),usedtocalculateleaderboardscoresForeachmovie,titleandyearofreleaseareprovidedinaseparatedataset.Noinformationatallisprovidedaboutusers.Inordertoprotecttheprivacyofcustomers,"someoftheratingdataforsomecustomersinthetrainingandqualifyin
2024/2/19 18:29:23 27KB dataset Netflix
1
完整YOLOv3TensorFlow实现,支持您自己的数据集培训
2024/2/19 16:13:11 2.44MB Python开发-机器学习
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡