最近几年,例如YAGO和DBpedia等大规模知识库发展有了很大的进步。
知识库提供了大量的不同种类的实体信息,如人、国家、河流、城市大学等等,同时知识库包含了大量的在实体(entity)间的关系既事实(fact)。
当今的知识库包含的数据量是巨大的通常有百万个实体和上亿个描述实体间关系的事实数据。
虽然目前的知识库存在大量的实体和事实数据,但是这样大规模的数据仍然不完整。
目前构建知识库的方法主要有两种,一种是从大量的文本中抽取事实但这种方法必然会带来大量的噪声数据,第二是人工扩展,但这样的方法对于时间的开销是极大的。
如果确保一个知识库是完整的则必须花费很大的努力来抽取大量的事实,并检查事实的正确性,因为只有正确的事实加入到知识库中才是有意义的。
同时知识库的本身由于有足够的信息可以推理出更多的新的事实。
例如有这样一个例子,一个知识库包含一组事实是孩子c有一个妈妈m,这样可以推理得出孩子妈妈的丈夫f很可能是孩子的父亲。
该逻辑规则形式化的描述如下:motherof(m,c)∧marriedTo(m,f)⟹fatherof(f,c)挖掘这种规则可帮助做一下四种事情:1、利用这种规则来推理出新的事实,而这些被挖掘出的新的事实可以使知识库更完整。
2、这些规则可以检测出知识库潜在的错误例如一个陈述是一个与一个男孩无关的人是这个男孩的父亲,这样的陈述很可能是错误的。
3、有很多推理工具依赖其他工具提供规则,所以这些被挖掘出来的规则可以用于推理。
4、这些规则描述一个普遍的规律,这些规律可以帮我我们理解分析知识库中的数据,如找到一些国家通常与说同一种语言的国家交易。
或结婚是一个对称关系,或使用同一个乐器的音乐家通常互相影响等等。
AMIE的目标是从RDF格式的知识库中挖掘如上所述的逻辑规则,在语义网(SemanticWeb)中存在大量的RDF知识库如YAGO、Freebase和DBpedia等。
这些知识库使用RDF三元组(S,P,O)提供二元关系(binaryrelation)的描述。
由于知识库一般只包含正例而(S,P,O)没有反例(S,¬P,O),所以RDF这样的知识库中仅能通过正例来推理。
进一步来说在RDF知识库上的操作是基于开放世界假设(OWA)的。
在开放世界假设下,一个事实没有在知识库中存在那么我们不能说这个事实是错误的,只能说这个陈述是未知的。
这与标准的数据库在封闭世界假设的设定有本质上的区别。
例如在知识库中没有包含marry(a,b),在封闭世界假设中我们可以得出这个a没有和b结婚而在开放世界假设下我们只能说a可能结婚了也可能单身。
压缩包内包含AMIE可运行源代码与相应文档资料,欢迎下载参考
2025/4/10 17:38:48 2.43MB 不完整 知识库 关联规则 数据挖掘
1
当您对C#7.0或.NETCLR及其核心框架程序集有疑问时,这本畅销书指南有您需要的答案。
自2000年首次亮相以来,C#已经成为一种非常灵活和广泛的语言,但其持续增长意味着有更多的东西要学习。
围绕概念和用例进行组织,这个更新的版本为中级和高级程序员提供了C#和.NET知识的简洁图。
潜入并发现为什么这个果壳指南被认为是C#的权威参考。
熟悉C#语言,从语法和变量的基础知识到高级主题,如指针,运算符重载和动态绑定通过专门讨论这个话题的三章深入探讨LINQ探索并发和异步,高级线程和并行编程使用.NET功能,包括XML,正则表达式,网络,序列化,反射,应用程序域和安全性深入研究模块化的C#7.0编译器即服务Roslyn
2025/4/10 10:38:17 8.28MB C#7.0
1
MATLAB图像增强程序举例灰度变换增强程序直方图灰度变换直方图均衡化程序举例直方图规定化程序举例空域滤波增强部分程序频域增强程序举例布特沃斯低通滤波器图像实例色彩增强程序举例
2025/4/10 9:18:53 621KB MATLAB 图像 增强 程序
1
人脸检测小程序,matlab,基于二值化,肤色,其中有摄像头调用程序
2025/4/9 16:19:01 7.19MB 人脸检测
1
AxureRP最全导入资源,制作炫酷流畅吊炸天,丰富有品高内涵的图形化演示界面,使用AxureRP,人生从此自信了。
2025/4/9 13:19:25 130.52MB AxureRP IMport
1
该项目是通过。
可用脚本在项目目录中,可以运行:npmstart在开发模式下运行应用程序。
打开在浏览器中查看它。
如果进行编辑,页面将重新加载。
您还将在控制台中看到任何棉绒错误。
npmtest在交互式监视模式下启动测试运行程序。
有关更多信息,请参见关于的部分。
npmrunbuild构建生产到应用程序build文件夹。
它在生产模式下正确捆绑了React,并优化了构建以获得最佳性能。
最小化构建,文件名包含哈希。
您的应用已准备好进行部署!有关更多信息,请参见有关的部分。
npmruneject注意:这是单向操作。
eject,您将无法返回!如果您对构建工具和配置选择不满意,则可以随时eject。
此命令将从项目中删除单个构建依赖项。
而是将所有配置文件和传递依赖项(Webpack,Babel,ESLint等)直接复制到您的项目中,
2025/4/8 19:18:23 937KB JavaScript
1
随着电子技术与软件技术的飞速发展,嵌入式系统技术己经成了最热门的技术之一。
嵌入式实时操作系统是嵌入式应用软件的基础和开发平台,其中涉及到软件和硬件两方面的问题。
嵌入式实时操作系统研究的核心在于其内核结构和基本功能的研究以及嵌入式实时操作系统在不同芯片上的移植、任务的开发以及功能的扩展,同时这也是嵌入式实时操作系统的难点问题。
μC/OS-II以其结构清晰、性能稳定、源码公开等特点,受到广大嵌入式系统开发人员的青睐,已作为嵌入式实时操作系统被移植到许多微处理器上,在国防、航天航空、交通、能源、工业控制、通信以及人们日常生活等各个领域得到了广泛的应用。
本文在阐述嵌入式实时操作系统概念和特性的基础之上,简单介绍了μC/OS-II的特点及其内核结构,分析了μC/OS-II中的任务调度和中断处理机制的过程,描述了μC/OS-II中时钟节拍服务和μC/OS-II初始化和启动的步骤。
在充分了解了μC/OS-II的工作原理后,本文详细讨论了μC/OS-II在51单片机上的移植过程,其中包括OS_CPU.H、OS_CPU_A.ASM、OS_CPU_C.C这3个文件的修改。
最后本文通过建立两个小任务来对μC/OS-II的移植进行了有效的测试。
1
C语言编写万年历,图片界面美观大方,人性化。
可作为C语言课程设计
2025/4/8 13:03:51 2KB C语言 万年历 图形界面
1
网上down的跳棋程序源码,C++可视化编程
2025/4/8 6:35:56 409KB MFC VC++ 跳棋 源码
1
【GNSS/INS松组合导航Matlab程序】是一种在航空航天、自动驾驶、航海等领域广泛应用的导航技术,它结合了全球导航卫星系统(GNSS)和惯性导航系统(INS)的优点,提高了定位精度和稳定性。
在Matlab环境中实现这种松组合导航,能够方便地进行算法设计、仿真与验证。
我们要理解GNSS和INS的基本原理。
GNSS,如GPS(全球定位系统),通过接收来自卫星的信号来确定地面设备的位置、速度和时间。
而INS则依赖于陀螺仪和加速度计来测量载体的运动状态,无需外部参考即可连续提供位置、速度和姿态信息。
然而,GNSS可能会受到遮挡或干扰,INS则存在累积误差问题,松组合导航正是为了解决这些问题。
松组合导航的关键在于数据融合。
在Matlab程序中,通常会先利用GNSS数据生成初始的轨迹,然后根据这个轨迹产生模拟的惯导数据,包括陀螺仪和加速度计的输出。
这部分涉及到了信号处理、滤波理论和随机过程的知识,比如卡尔曼滤波(KalmanFilter)常被用于融合这两类传感器的数据。
接下来,这些模拟数据会被输入到惯导解算器中,进行运动状态的更新和校正。
惯导解算通常涉及到牛顿-欧拉方程、四元数表示法等,用于计算载体的位置、速度和姿态。
在Matlab中,可以利用内置的函数或自定义算法来实现这一过程。
仿真完成后,会使用这些模拟的GPS和INS数据进行松组合导航的实现。
松组合意味着GNSS和INS系统保持相对独立,各自进行数据处理,然后在一个高层次上进行信息交换。
这样做的好处是可以避免一个系统的误差影响另一个系统,同时保留各自的优点。
组合导航算法可能包括简单的数据融合策略,如时间同步或者更复杂的滤波算法。
在【sins+gnss】这个压缩包中,可能包含了实现上述功能的Matlab源代码文件,如初始化配置文件、数据生成脚本、滤波算法实现、结果分析工具等。
用户可以通过阅读和运行这些代码,深入理解松组合导航的工作原理,并对其进行定制和优化。
GNSS/INS松组合导航Matlab程序是导航技术研究的重要工具,涵盖了卫星导航、惯性导航、数据融合等多个领域的知识。
通过对这套程序的学习和实践,不仅可以掌握相关算法,还可以提升在复杂环境下的定位能力,对于科研和工程应用具有很高的价值。
2025/4/7 15:39:40 6.49MB matlab GNSS/INS
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡