论文介绍MIMO-OFDM系统中几种基于导频的信道估计方法。
首先研究了单天线OFDM系统的信道估计算法。
一方面重点关注三种估计准则的原理,仿真表明LMMSE准则具有最佳的功能;
另一方面介绍了几种插值的方法用来恢复非导频处的信道信息。
然后研究了发射分集OFDM系统的信道估计,重点分析了三种导频的设计方案。
仿真表明,使用最佳训练序列可以达到最优的功能,同时占用的资源少,但是复杂度很高。
关键词:无线移动通信;
正交频分复用;
多输入多输出;
信道估计;
最小均方误差;
最佳训练序
1
本文对无线传感器网络中不同的定位算法对定位误差的影响进行了研讨比较。
采用的定位算法有:基于测距的RSSI-MLE,RSSI-BP,RSSI-RBF和距离无关的HOP-BP,HOP-RBF,VN-BP,VN-RBF七种定位算法。
在相同的仿真条件下,利用Matlab对这七种定位算法进行仿真研讨。
2022/9/7 11:53:32 457KB Matlab WSN 定位
1
首先你需要知道卡尔曼滤波,卡尔曼滤波适用于线性系统,针对于非线性系统很好推广应用。
EKF利用线性化的方式,让形态和协方差在线性化方程中传播,但是面对强非线性,这种方式误差较大,因为高斯分布的噪声经过非线性系统的分布并不是高斯分布。
UKF利用5个采样点(无迹变换)在非线性系统中传播,降低了随机变量经过非线性系统传播的误差,效果强于EKF。
针对P矩阵出现非正定的情况,其实有很多处理方式的。
2022/9/7 2:47:20 15KB matlab代码
1
利用python完成bp神经网络,采用误差逆传播算法训练模型,并在一个toyset上进行了验证
2022/9/6 20:13:09 42KB 神经网络
1
为了处理空间载波相移(SCPS)法中载波频率不确定引入的误差,提出了一种基于最小二乘迭代的空间载波相移算法。
先将单幅随机空间载波频率干涉图转化成四幅随机相移量的时域干涉图,然后用最小二乘迭代求得相位信息。
模拟计算和实验结果表明,该算法只需10次左右的迭代计算就可实现算法峰值(PV)精度优于λ/20,均方根(RMS)精度优于λ/200,高于快速傅里叶变换(FFT)法;通过提高空间载波频率,使载波方向接近45°或135°可提高该算法的精度。
2022/9/6 19:12:32 765KB 测量与计 干涉测量 空间载波
1
课程分为数据采集与智能仪器两部分。
在数据采集部分概要引见计算机接口技术。
在数据采集部分概要引见计算机接口技术。
讨论模拟信号数字化过程中的采样原理和采样方式、量化与量化误差、孔径时间与系统通过速率等基本概念。
着重讲授数据采集系统中的各个主要环节,各种D/A和A/D的工作原理、实现方式、特点和适用场。
2022/9/6 11:26:54 95.36MB DSP 模拟信号 数字信号
1
这是我修正的别人的代码,别人的代码有点问题,我修正了一下,代码的正确率很高,可达90%以上,这是一个5层卷积神经网络的代码,误差传递和梯度更新代码里都有,可自学。
2022/9/5 19:46:49 11.08MB cnn 卷积神经网络 正确率高
1
最小均方算法(LeastMeanSquare,LMS)是一种简单、应用为广泛的自适应滤波算法,是在维纳滤波理论上运用速下降法后的优化延伸,早是由Widrow和Hoff提出来的。
该算法不需要已知输入信号和期望信号的统计特征,“当前时辰”的权系数是通过“上一时辰”权系数再加上一个负均方误差梯度的比例项求得。
这种算法也被称为Widrow-HoffLMS算法,在自适应滤波器中得到广泛应用,其具有原理简单、参数少、收敛速度较快而且易于实现等优点。
2022/9/5 2:48:09 2KB LMS
1
Fuzzysimulink有关模糊PID问题概述-自适应模糊PID.rar最近很多人问我关于模糊PID的问题,我就把模糊PID的问题综合了一下,希望对大家有所帮助。
一、模糊PID就是指自适应模糊PID吗?不是,通常模糊控制和PID控制结合的方式有以下几种:1、大误差范围内采用模糊控制,小误差范围内转换成PID控制的模糊PID开关切换控制。
2、PID控制与模糊控制并联而成的混合型模糊PID控制。
3、利用模糊控制器在线整定PID控制器参数的自适应模糊PID控制。
一般用1和3比较多,MATLAB自带的水箱液位控制tank采用的就是开关切换控制。
由于自适应模糊PID控制效果更加良好,而且大多数人选用自适应模糊PID控制器,所以在这里主要指自适应模糊PID控制器。
二、自适应模糊PID的概念根据PID控制器的三个参数与偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制器的三个参数,让PID参数可自整定。
就我的理解而言,它最终还是一个PID控制器,但是因为参数可自动调整的缘故,所以也能解决不少一般的非线性问题,但是假如系统的非线性、不确定性很严重时,那模糊PID的控制效果就会不理想啦。
三、模糊PID控制规则是怎么定的?这个控制规则当然很重要,一般经验:当e较大时,为使系统具有较好的跟踪功能,应取较大的Kp与较小的Kd,同时为避免系统响应出现较大的超调,应对积分作用加以限制,通常取Ki=0。
当e处于中等大小时,为使系统响应具有较小的超调,Kp应取得小些。
在这种情况下,Kd的取值对系统响应的影响较大,Ki的取值要适当。
当e较小时,为使系统具有较好的稳定功能,Kp与Ki均应取得大些,同时为避免系统在设定值附近出现振荡,Kd值的选择根据|ec|值较大时,Kd取较小值,通常Kd为中等大小。
另外主要还得根据系统本身的特性和你自己的经验来整定,当然你先得弄明白PID三个参数Kp,Ki,Kd各自的作用,尤其对于你控制的这个系统。
四、量化因子Ke,Kec,Ku该如何确定?有个一般的公式:Ke=n/e,Kec=m/ec,Ku=u/l。
n,m,l分别为Ke,Kec,Ku的量化等级,一般可取6或7。
e,ec,u分别为误差,误差变化率,控制输出的论域。
不过通过我实际的调试,有时候这些公式并不好使。
所以我一般都采用凑试法,根据你的经验,先确定Ku,这个直接关系着你的输出是发散的还是收敛的。
再确定Ke,这个直接关系着输出的稳态误差响应。
最后确定Kec,前面两个参数确定好了,这个应该也不会难了。
五、在仿真的时候会出现刚开始仿真的时候时间进度很慢,从e-10次方等等开始,该怎么解决?这时候肯定会有许多人跳出来说是步长的问题,等你改完步长,能运行了,一看结果,惨不忍睹!我只能说这个情况有可能是你的参数有错误,但如果各项参数是正确的前提下,你可以在方框图里面加饱和输出模块或者改变阶跃信号的sampletime,让不从0开始或者加个延迟模块或者加零阶保持器看看……六、仿真到一半的时候仿真不动了是什么原因?仿真图形很有可能发散了,加个零阶保持器,饱和输出模块看看效果。
改变Ke,Kec,Ku的参数。
七、仿真图形怎么反了?把Ku里面的参数改变一下符号,比如说从正变为负。
模糊PID的话改变Kp的就可以。
八、还有人问我为什么有的自适应模糊PID里有相加的模块而有的没有?相加的是与PID的初值相加。
最后出来的各项参数Kp=△KpKp0,Ki=△KiKi0,Kd=△KdKd0。
Kp0,Ki0,Kd0分别为PID的初值。
有的系统并没有设定PID的初值。
九、我照着论文搭建的,什么都是正确的,为什么最后就是结果不对?你修改下参数或者重新搭建一遍。
哪一点出了点小问题,都有可能导致失败。
……大家还有什么问题就在帖子后面留言哈,如果模型实在是搭建不成功的话可以给我看看,大家有问题一起解决!附件里面是两个自适应模糊PID的程序,大家可以参考下!所含文件:Figure38.jpgsimulink有关模糊PID问题概述结构图:Figure39.jpgsimulink有关模糊PID问题概述Figure40.jpgsimulink有关模糊PID问题概述
2022/9/4 9:33:16 17KB matlab
1
天线电感选择比TVDD发射电流大的标称值,封装选择尽量小,但不能0805小。
如FM17550,天线发射电流在100mA,可以选择MLF2012DR68KT,680nH,±10%,该电感电流达到150mA。
如使用RC663,电感选择需要比250mA标称值大。
天线采用双端驱动,具有更好的驱动能力。
对应天线区域内的元件,选择5%精度以内的,在使用低功耗侦测卡片(LPCD)功能时,天线区域内元件选择2%精度以内的。
精度10%的元件会导致天线谐振频点偏差,如天线谐振电容在200pF,误差在±20pF,会使得谐振频率偏离±0.6MHz,导致读卡功能严重下降。
在使用LPCD功能时,元件误差会导致误触发读卡或者卡片侦测不到,产品一致性难以保证。
2022/9/4 9:02:56 1.58MB RFID FM1755 LPCD
1
共 563 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡