为了精确评价纱线疵点的种类与个数,提出了一种融合空间模糊C-均值(FCM)聚类的纱线疵点检测算法。
首先利用融合空间FCM聚类算法提取纱线条干;然后对纱线条干进行形状学开运算处理,以获取精确的纱线条干,并利用条干上下边缘点之间的像素个数计算纱线的直径与平均直径;最后根据纱线疵点标准判定纱线疵点的种类与个数。
为了验证本算法的有效性和准确性,对多种不同线密度的纯棉纱线进行测试,并将测试结果与电容性纱疵分级仪的检测结果进行对比。
结果表明,本算法与电容性的检测结果一致性较好,且价格低廉,不易受环境温度、湿度等因素的影响。
1
用matlab实现模拟退火k均值聚类,只需有样本特征库就能运行。
2016/6/15 14:26:54 2KB matlab聚类
1
初始聚类中心给定。
K均值聚类算法首先是聚类算法。
K均值算法是一种简单的迭代型聚类算法,采用距离作为类似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。
它将类似的对象归到同一个簇中,聚类方法几乎可以应用于所有对象,簇内的对象越类似,聚类的效果越好,之所以称之为K-均值是因为它可以发现k个不同的簇。
2018/3/20 4:08:39 1.7MB k均值
1
本程序是面向对象的K均值聚类方法的模仿退火法的改进版本
2017/1/16 1:57:30 4KB C++
1
首先,读取利用数据绘制了31个省份的直方图和曲线图并进行分析;
其次,利用手肘法确定K均值聚类的K值并对数据31个样品进行K均值聚类;
再次;
利用K均值聚类的效果,采用同样分类个数的模糊C均值聚类方法对31个样品再次聚类,并得到了每个样品聚类的结果和概率;
最初,根据原始数据求得其协方差矩阵并进行主成分分析,基于生活经验与查阅资料对主成分进行解释和验证。
1
亲测可用!图像模糊C均值聚类分割matlab代码,聚类分割后显示图像。
仅需要本人修改读图路径。
2019/10/25 5:35:37 921B 模糊聚类 matlab 图像分割
1
手脸近距遮挡属于深度传感器应用中具有代表性的难点问题,针对该问题提出了一种综合利用颜色与深度信息的手势识别方法。
采用核模糊C-均值聚类,对手脸遮挡图像进行粗分割和灰度增强,实现手脸分离。
引入初始化水平集函数,处理聚类方法导致的手势区域像元缺失问题。
利用基于深度信息的梯度方向直方图(HOG)特征对手势进行分类识别。
通过采集不同人体手脸近距遮挡情形下的多种手势图像建立了样本数据库,进行了对比实验,实验结果验证了该方法的可行性和有效性。
本文方法能有效分离近距遮挡的手和脸,提取得到相对完整的手势信息,深度HOG特征能够对手势空间信息进行精确描述,具有比传统形状特征更准确的识别效果。
1
模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法使用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最优分类结果。
2020/2/5 6:05:33 3KB 模糊C-均值 遗传算法
1
恍惚c均值聚类算法用于图像分割,已调试成功。
2017/11/16 21:38:42 7KB fcm 图像分割
1
利用聚类技术实现纹理图像分割a)针对合成纹理图像(共有4个合成纹理图像,见文件夹:data\Texture_mosaic)中每一个像素提取纹理特征向量(提取纹理特征的方法可以为课堂讲的,也可以自己查找资料);
b)利用聚类技术(推荐用k-均值聚类,可以从网上查找原码)对特征向量空间中的点进行聚类,类别数可根据图像中的实际纹理类数确定。
最后把类属标签映射成图像方式显示(如下图,其中b、d、f、h为相应的基准分割图像)。
2020/5/14 20:01:48 827KB 聚类技术 纹理图像分割
1
共 52 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡