该书共分为6章,分别为基础概率论、进阶概率论、概率分布、统计推断:频率学派、统计推断:贝叶斯学派和回归分析,每章分为三个小节。
,这本书充分利用了数据可视化技术,交互性和趣味性都非常强,可以边读边玩。
教学网站https://seeing-theory.brown.edu/cn.html#firstPage
2025/7/2 13:06:20 319KB 统计 概率论 可视化 人工智能
1
JAVA学习的进阶,帮助学习JAVA,提升水平,针对成为工程师的训练
2025/7/1 12:44:30 157KB JAVA docx
1
分数阶PID控制的MATLAB、SIMULINK工具箱
2025/6/30 19:12:10 76KB 分数阶 PID matlab
1
贝塞尔曲线是一种在计算机图形学和数学中广泛使用的参数化曲线,它提供了对形状的精细控制,特别是在曲线拟合和路径设计中。
本资源包含MATLAB源码,用于实现从一阶到八阶的贝塞尔曲线拟合,以及一个拟合后评价标准的文档。
一、贝塞尔曲线基础贝塞尔曲线由法国工程师PierreBézier于1962年提出,它基于控制点来定义。
一阶贝塞尔曲线是线性,二阶是二次曲线,而高阶曲线则可以构建出更复杂的形状。
对于n阶贝塞尔曲线,需要n+1个控制点来定义。
这些曲线的特性在于它们通过首尾两个控制点,并且随着阶数的增加,曲线更好地逼近中间的控制点。
二、MATLAB实现MATLAB是一个强大的数值计算和可视化工具,其脚本语言非常适合进行这样的曲线拟合工作。
`myBezier_ALL.m`文件很可能是包含了从一阶到八阶贝塞尔曲线的生成函数。
这些函数可能接收控制点的坐标作为输入,然后通过贝塞尔曲线的数学公式计算出对应的参数曲线。
MATLAB中的贝塞尔曲线可以通过`bezier`函数或直接使用矩阵运算来实现。
三、贝塞尔曲线拟合拟合过程通常涉及找到一组控制点,使得生成的贝塞尔曲线尽可能接近给定的一系列数据点。
这可能通过优化算法,如梯度下降或遗传算法来实现。
在`myBezier_ALL.m`中,可能包含了一个或多个函数来执行这个过程,尝试最小化曲线与数据点之间的距离或误差。
四、拟合的评价标准"拟合的评价标准.doc"文档可能详述了如何评估拟合的好坏。
常见的评价标准包括均方误差(MSE)、均方根误差(RMSE)或者R²分数。
这些指标可以量化拟合曲线与实际数据点之间的偏差程度。
MSE和RMSE衡量的是平均误差的平方,而R²分数表示模型解释了数据变异性的比例,值越接近1表示拟合越好。
五、应用领域贝塞尔曲线在多个领域有广泛应用,包括但不限于CAD设计、游戏开发、动画制作、图像处理和工程计算。
MATLAB源码的提供,对于学习和研究贝塞尔曲线的特性和拟合方法,或者在项目中创建平滑曲线路径,都是非常有价值的资源。
这份MATLAB源码和相关文档为理解并实践贝塞尔曲线拟合提供了一个完整的工具集。
通过学习和利用这些材料,用户不仅可以掌握贝塞尔曲线的基本概念,还能深入理解如何在实际问题中运用它们进行曲线拟合和评估。
2025/6/30 9:00:23 25KB 贝塞尔曲线 曲线拟合
1
matlab源码,实现1-8阶贝塞尔(bezier)曲线拟合。
另外附了一个拟合后的评价标准,sse,rmse等的说明(感谢hitwyb)
2025/6/30 8:51:16 25KB Matlab bezier 贝塞尔曲线 拟合
1
这份Matlab源代码可以实现1到8阶的贝塞尔曲线拟合,从而帮助你更好地分析和处理数据。
贝塞尔曲线拟合是一种常用的数学方法,它可以通过调整曲线的控制点来拟合数据,从而得到更加平滑的曲线。
此外,我们还附上了一个拟合后的评价标准,它可以帮助你评估拟合结果的准确性和可靠性。
通过使用这份源代码和评价标准,你可以更加深入地研究你的数据,并得出更加准确的结论。
2025/6/30 8:44:43 28KB matlab
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
《精通D3.js:交互式数据可视化高级编程》以当前流行的数据可视化技术D3.js为主要内容,分为三大部分,共计13章。
第一部分讲述基础知识,第二部分学习制作各种常见图表,第三部分讲解交互式图表及地图的进阶应用。
《精通D3.js:交互式数据可视化高级编程》是一个相对完整的D3.js教程,讲解此技术所有重要的知识点,既有基础入门知识,又有相对深入的内容。
笔者秉持以下原则:由易到难,循序渐进,图文并茂,清晰易懂。
2025/6/27 0:55:31 11.1MB D3.js 数据可视化
1
用于弱信号检测的二阶匹配随机共振效应的SMSR仿真
2025/6/25 9:52:10 6KB SMSR
1

【百度地图Demo详解】在IT行业中,地图API的使用已经成为许多应用不可或缺的一部分,尤其是在移动开发领域。
百度地图作为国内主流的地图服务提供商之一,为开发者提供了丰富的API和SDK,便于他们在项目中集成地图功能。
本篇将详细介绍“百度地图Demo”,以及如何通过它来理解和运用百度地图API。
我们要理解什么是“Demo”。
在编程和软件开发中,Demo通常是指一个简化的示例程序,它展示了特定功能或技术的实际应用。
百度地图Demo就是一个包含了基础和进阶功能的实例,帮助开发者快速上手并理解如何在自己的应用中集成百度地图服务。
1. **注册与获取API密钥** 在使用百度地图API之前,我们需要在百度地图开放平台注册一个账号,并创建应用以获取API密钥。
这个密钥是我们在集成地图服务时必须提供的,用于识别调用来源,确保服务的安全性和可控性。
2. **基本地图展示** 百度地图Demo中的基础功能包括加载地图、设置缩放级别、平移和旋转地图。
这可以通过JavaScript API实现,通过创建地图实例、指定容器元素和设置地图中心点坐标来完成。
3. **标注与覆盖物** 在地图上添加标注可以指示特定地点,例如商店、学校等。
百度地图API提供了多种类型的覆盖物,包括点标记、信息窗口、多边形、圆等。
开发者可以根据需求自定义样式和交互行为。
4. **地理编码与反地理编码** 地理编码是将地址转换为坐标的过程,反地理编码则是将坐标转换为地址。
这两个功能在地图应用中非常实用,例如搜索附近的地点或者根据用户点击的位置显示相关信息。
5. **路线规划** 百度地图提供了丰富的路径规划API,包括驾车、公交、步行等多种方式。
开发者可以定制起点和终点,API会返回详细的路线信息,包括距离、预计时间、步骤等。
6. **实时交通信息** 结合百度地图的交通数据,开发者可以展示实时路况,帮助用户避开拥堵区域,提升出行效率。
7. **地图事件监听** 通过监听地图的点击、拖动等事件,开发者可以实现更丰富的交互功能,比如在用户点击地图时弹出信息窗口,或者在拖动地图时更新定位点。
8. **离线地图** 虽然“student20120923.bak”和“stumanager”两个文件名看起来不像是直接关联百度地图Demo的文件,但它们可能代表了对离线地图数据的备份或管理。
离线地图是针对网络环境不稳定或节省流量场景的一种解决方案,开发者可以通过百度地图SDK实现离线地图的下载、存储和使用。
9. **地图样式自定义** 百度地图允许开发者自定义地图样式,包括更改颜色、隐藏特定图层、设置透明度等,以适应不同应用场景的需求。
10. **集成定位服务** 百度地图API提供了定位服务,可以获取设备的当前位置,同时支持室内定位和高精度定位。
开发者可以结合这些功能实现导航、签到等应用。
“百度地图Demo”是一个全面的教程,涵盖了地图集成的各个方面。
通过学习和实践,开发者不仅可以了解百度地图API的基本用法,还能掌握如何在实际项目中灵活运用,为用户提供更加便捷和丰富的地图体验。
2025/6/19 16:46:25 19.3MB
1
共 837 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡