帕绍大学硕士论文主题:域自适应本文讨论了一种通用的领域自适应模型技术的发展,这将有助于解决各种计算机视觉任务。
该模型在流行的视觉域数据集上进行图像分类任务训练,并且与其他可用的域适应方法相比,该模型的性能得到了评估。
“基于幅度的权重修剪”技术用于执行目标特征提取器优化。
有关代码的说明:models.py模块定义了源模型和目标模型。
Xception网络和顶层config.py模块定义了各种参数,例如设置路径,实验数据集组合ID等。
将来可能会添加其他配置loss.py定义了其他损失方法。
preprocessing.py模块使用各种数据集组合(包括数据扩充)定义数据预处理管道。
train_test.py是一个帮助程序模块,它定义了培训和评估方法。
evals_helper.py是一个帮助程序模块,它详细定义了评估方法。
utlis.py定义了各种绘图,辅助方法和
2025/10/7 10:41:06 2.61MB JupyterNotebook
1
基于磁场检测的寻线小车传感器布局研究电磁组竞赛车模路径检测设计参考方案基于电磁场检测的寻线智能车设计
2025/10/5 9:46:03 2.53MB 智能车 卓大大
1
白盒测试基本路径自动生成工具制作
2025/10/5 5:38:42 122KB 白盒测试
1
设计校园平面图,在校园景点选10个左右景点。
以图中顶点表示校园内各景点,存放景点名称、编号、简介等信息;
以边表示路径,存放路径长度等有关信息。
   为来访客人提供图中任意景点相关信息的查询。
   学校的简介   为来访客人提供任意景点的问路查询,即查询任意两个景点之间的一条最短路径。
    实现提示:一般情况下,校园的道路是双向通行的,可设计校园平面图是一个无向网。
顶点和边均含有相关信息。
2025/10/4 21:15:47 690KB 导航
1
C++实现的A*寻路算法,经过测试,在有障碍物的情况下,路径为期望路径,内附测试结果,可以修改地图的大小及障碍物位置,比如大小改为1920*1080,使其更接近真实电脑屏幕或者手机屏幕分辨率,得到更为贴近实际的运算效率
2025/10/3 22:51:40 2KB A* A星 C++
1
ROS机器人turtlebot路径规划,文件夹中包括了OMPL_ros_turtlebot,贝塞尔曲线拟合后的rrt,move-base-ompl,navigation_tutorials,relaxed_astar等路径规划资源,可用于ROS机器人的路径规划研究
1
分析了车辆常用行驶方式的效率,用matlab实现dijkstra算法,并对河北省主要城市的无向赋权图用上述算法求解了最短路径,含源程序和运行结果图
2025/9/27 19:33:08 551KB dijkstra matlab
1
算法分析基础——Fibonacci序列问题分治法在数值问题中的应用——最近点对问题减治法在组合问题中的应用——8枚硬币问题变治法在排序问题中的应用——堆排序问题动态规划法在图问题中的应用——全源最短路径问题3.实验要求(1)实现Floyd算法;
(2)算法的输入可以手动输入,也可以自动生成;
(3)算法不仅要输出从每个顶点到其他所有顶点之间的最短路径,还有输出最短路径的长度;
(4)设计一个权重为负的图或有向图的例子,对于它,Floyd算法不能输出正确的结果3.实验要求1)设计与实现堆排序算法;
2)待排序的数据可以手工输入(通常规模比较小,10个数据左右),用以检测程序的正确性;
也可以计算机随机生成(通常规模比较大,1500-3000个数据左右),用以检验(用计数法)堆排序算法的时间效率3.实验要求1)设计减治算法实现8枚硬币问题;
2)设计实验程序,考察用减治技术设计的算法是否高效;
3)扩展算法,使之能处理n枚硬币中有一枚假币的问题。
3.实验要求1)使用教材2.5节中介绍的迭代算法Fib(n),找出最大的n,使得第n个Fibonacci数不超过计算机所能表示的最大整数,并给出具体的执行时间;
2)对于要求1),使用教材2.5节中介绍的递归算法F(n)进行计算,同样给出具体的执行时间,并同1)的执行时间进行比较;
3)对于输入同样的非负整数n,比较上述两种算法基本操作的执行次数;
4)对1)中的迭代算法进行改进,使得改进后的迭代算法其空间复杂度为Θ(1);
5)设计可供用户选择算法的交互式菜单(放在相应的主菜单下)
1
C++播放器基于VLC,仅10多行代码的万能播放器。
注意要把代码中的音乐路径换成您本地的音乐路径哦~
1
界面还算合理,运行结果无误,可以看见搜索路径,注释还算详细。
2025/9/26 14:42:15 70KB n皇后,界面
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡