收到一些国内外朋友的来信,咨询关于容积卡尔曼滤波的问题(CKF),大家比较疑惑的应该就是generator或G-orbit的概念。
考虑到工作以后,重心必然转移,不可能再像现在这样详细的回答所有人的问题,更不可能再帮大家改论文、写(或改)代码了,请各位谅解!在此,上传一个CKF和五阶CKF用于目标跟踪的示例代码,代码中包含详细的注释,希望对大家以后的学习和研究有所帮助!此代码利用C++对五阶CKF的第二G-轨迹进行了封装(Perms.exe),能理解最好,如果无法理解,也无须深究其具体构造方法!可执行文件底层是用字符串+递归算法实现的,理论上可以应用于任意维模型。
但考虑到递归算法可能存在的栈溢出,重复压栈出栈带来的时间消耗等问题,我们利用矩阵的稀疏性和群的完全对称性,并通过分次调用,来尽可能减少栈的深度,提高计算速度。
容积点一次生成后,可以一直使用,通过对50维G-轨迹的生成速度(CoreT6600@2.2GHz)进行测试,包含数据读写在内的速度约为1.5秒,速度尚可。
而目前为止,本人尚未遇到达到甚至超过50维的系统,因此,暂时不作算法层面的优化。
注意:Perms.exe可以用于任意维模型,将可执行文件复制至工作目录下,调用时选择N/n,并输入你的模型维数,即可生成所需的第二G-轨迹。
如果无法理解相关的概念,请参考示例代码,并记住如何使用即可~~~相关理论基础及所用模型,请参考以下文献:References(youmayciteoneofthearticlesinyourpaper):[1]X.C.Zhang,C.J.Guo,"CubatureKalmanfilters:Derivationandextension,"ChinsesPhysicsB,vol.22,no.12,128401,DOI:10.1088/1674-1056/22/12/128401[2]X.C.Zhang,Y.L.Teng,"AnewderivationofthecubatureKalmanfilters,"AsianJournalofControl,DOI:10.1002/asjc.926[3]X.C.Zhang,"Cubatureinformationfiltersusinghigh-degreeandembeddedcubaturerules,"Circuits,Systems,andSignalProcessing,vol.33,no.6,pp.1799-1818,DOI:10.1007/s00034-013-9730-0
2024/5/26 2:39:13 239KB CKF 五阶CKF 目标跟踪
1
目标跟踪中最基本的模型;对理解目标跟踪的机理、意义有很大帮助。
本文比较了CV、CA模型的特点及跟踪精度的不同,对毕业设计及理论研究有很大帮助!!!包含源程序、系统方差、噪声方差取值,在一维匀速、匀加速仿真条件下实现!!!!!(输入注释中R、Q值可在matlab出图,放在work文件下);
是个人论文中程序(论文已发表)。
2024/5/20 20:51:14 1KB CV CA模型 目标跟踪 卡尔曼滤波
1
可执行的基于数据关联的传统多目标跟踪算法,关联算法采用JPDA
2024/5/13 18:48:43 13KB JPDA
1
目标跟踪
2024/5/12 21:45:45 7KB 目标检测
1
针对机动目标跟踪的CT(联动式转弯运动)模型研究。
实现了MATLAB仿真,(出图)。
已给系统方差噪声方差Q、R,本人论文中已应用。
2024/4/30 4:08:41 987B CT 圆周运动 卡尔曼滤波 匀角速度
1
实现了静态背景下多目标的跟踪,并进行了可视化的跟踪效果,用矩形框框起了运动目标,并赋予了ID编号,还实现了另一种多目标跟踪算法
2024/4/21 9:28:11 9.58MB 多目标跟踪 opencv
1
基于决策的单模目标跟踪方法的关键是及时而稳健的目标机动检测,充分利用目标多普勒观测量能够有效提高机动检测性能。
提出一种集成多普勒观测的目标机动检测算法,利用基于马氏距离的预测寻优方法,克服了多普勒观测噪声水平较高时估计式无解的情况,提高了加速度估计精度;基于奈曼皮尔逊准则设计机动检测器,避免了因目标机动检测的滞后性带来的门限漂移。
仿真实验表明,算法提高了加速度估计的精度和稳健性,显著降低了平均检测延迟,有效提高了机动检测性能。
2024/4/16 16:39:38 1.58MB 研究论文
1
将运动目标跟踪问题分解为运动检测和目标跟踪分别加以讨论,分类描述了目标跟踪问题的研究现状、研究方法及常用算法,比较了各种方法的优劣及面临的技术难点问题,并对运动目标跟踪算法的研究前景进行了展望。
1
三维目标跟踪粒子滤波程序MATLAB仿真,有图有真相
2024/3/25 19:38:30 3KB 粒子滤波 MATLAB
1
GMM_运动检测_目标跟踪_背景建模基于高斯混合模型的运动物体检测。
有源代码和可执行程序,效果较好。
2024/3/24 6:08:23 8.41MB 运动检测 高斯混合模型 背景建模
1
共 134 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡