本设计是基于基于STM32的OV5640的一个车牌识别+停车场系统,单片机使用的正点原子的F407最小系统板,LCD使用的是正点原子的4.3寸电容式触摸屏,摄像头是正点原子的OV5640。
主要实现功能:识别车牌,系统记录该车出入。
2024/12/3 17:54:07 20.79MB 图像识别 stm32
1
封装库包含有AVR/51/USB/贴片铝电解(已上传有)/贴片钽电容/数码管等等,六年工作积累的,绝对对得起你的5个金币。
请不要用于商业用途谢谢。
2024/11/26 18:07:48 3.49MB 99se封装
1
硬件工作分3大块:原理图、PCB与BOM制作,这边给大家推荐一款BOM软件。
一般BOM中都会带有自己公司唯一料号,以区别不同的器件。
而这个编码存在与公司ERP系统中,原理图设计的软件中一般不带。
BOM制作的流程一般是,原理图导出不带料号的BOM,然后工程师手动在一份excel中填写对应的器件料号。
这些器件料号工程师记得在某个项目中使用过,则会同时打开以前对应的BOM,将料号复制过来,一部分则需要去ERP查找,非常费时间。
没想到一份普普通通的BOM占用了硬件工程师1小时以上,若料的数量多于100个,则需要2小时以上。
也有些公司,会直接用原理图软件,预先设计了器件库(原理图封装),这些封装库中带有了料号信息以及其他辅助信息。
缺点包含:会产生成百上千个电阻电容封装或其他相同封装的库,原理图中调用这些电阻电容步骤非常繁琐其次器件变更后,需要更新对应的器件库(器件变更一般由采购或者器件部完成,他们不懂原理图软件),这时候根据经验会出现扯皮的情况,况且,更新这成千上百个器件的信息,相当不容易器件变更后,以前的模块库或者以前的原理图都不可以直接用,因为里面的器件包含的是以前的信息时间的浪费,相当于做BOM的时间分散到了原理图调库硬件工程师其实特别期待的是:原理图中只包含2个信息:1)part,2)footprint,不要包含其他任何信息,不要一堆相同原理图封装的器件,比如电阻就1个封装,可以随意改变part或者footprint,支持在原理图中就近复制粘贴器件。
硬件工程师画原理图时,取值的风格一般不一样,即使部门经理要求了,也会存在老白兔不听的情况。
比如有的工程师电容part是100n,有的是0.1uF,而部门经理或者老板必然希望即使老白兔也不得不取值的风格完全一致。
因此希望有一款软件可以检查原理图取值的规范性。
1
最全的电阻电容电感原理图封装库,大家常用,可以收藏
2024/11/15 19:51:28 207KB altidinum
1
文档中包含有ADS仿真常用到的ATC公司的具体型号模型(600S系列,0805WL系列)S2P文件以及规格书;
该公司网站上其他系列电电感电容的下载方法;
电感电容S2P文件在ADS中使用说明。
亲测能用
2024/11/14 6:57:01 2.86MB ADS仿真 ATC 模型库
1
内容简介  这是本严谨的教程,它可帮助您缩短设计周期并改善器件效率。
书中设计工程师AndreiGrebennikov告诉您如何与计算机辅助设计技术结合在一起进行分析计算,在处理与生产的过程中提高效率;
使用了近300个详细的图表、曲线、电路图图示说明,提供给您所需要的、改善设计的所有信息。
  本书主要阐述设计射频与微波功率放大器所需的理论、方法、设计技巧,以及有效地将分析计算与计算机辅助设计相结合的优化设计方法。
它为电子工程师提供了几乎所有可能的方法,以提高设计效率和缩短设计周期。
书中不仅注重基于最新技术的新方法,而且涉及许多传统的设计方法,这些技术对现代无线通信系统的微电子核心是至关重要的。
主要内容包括非线性电路设计方法、非线性主动设备建模、阻抗匹配、功率合成器、阻抗变换器、定向耦合器、高效率的功率放大器设计、宽带功率放大器及通信系统中的功率放大器设计。
本书适合从事射频与微波功率放大器设计的工程师、研究人员及高校相关专业的师生阅读。
目录第1章双口网络参数1.1传统的网络参数1.2散射参数1.3双口网络参数间转换1.4双口网络的互相连接1.5实际的双口电路1.5.1单元件网络1.5.2Ⅱ形和T形网络1.6具有公共端口的三口网络1.7传输线参考文献第2章非线性电路设计方法2.1频域分析2.1.1三角恒等式法2.1.2分段线性近似法2.1.3贝塞尔函数法2.2时域分析2.3NewtOn.Raphscm算法2.4准线性法2.5谐波平衡法参考文献第3章非线性有源器件模型3.1功率MOSFET管3.1.1小信号等效电路3.1.2等效电路元件的确定3.1.3非线性I—V模型3.1.4非线性C.V模型3.1.5电荷守恒3.1.6栅一源电阻3.1.7温度依赖性3.2GaAsMESFET和HEMT管3.2.1小信号等效电路3.2.2等效电路元件的确定3.2.3CIJrtice平方非线性模型3.2.4Curtice.Ettenberg立方非线性模型3.2.5Materka—Kacprzak非线性模型3.2.6Raytheon(Statz等)非线性模型3.2.7rrriQuint非线性模型3.2.8Chalmers(Angek)v)非线性模型3.2.9IAF(Bemth)非线性模型3.2.10模型选择3.3BJT和HBT汀管3.3.1小信号等效电路3.3.2等效电路中元件的确定3.3.3本征z形电路与T形电路拓扑之间的等效互换3.3.4非线性双极器件模型参考文献第4章阻抗匹配4.1主要原理4.2Smith圆图4.3集中参数的匹配4.3.1双极UHF功率放大器4.3.2M0SFETVHF高功率放大器4.4使用传输线匹配4.4.1窄带功率放大器设计4.4.2宽带高功率放大器设计4.5传输线类型4.5.1同轴线4.5.2带状线4.5.3微带线4.5.4槽线4.5.5共面波导参考文献第5章功率合成器、阻抗变换器和定向耦合器5.1基本特性5.2三口网络5.3四口网络5.4同轴电缆变换器和合成器5.5wilkinson功率分配器5.6微波混合桥5.7耦合线定向耦合器参考文献第6章功率放大器设计基础6.1主要特性6.2增益和稳定性6.3稳定电路技术6.3.1BJT潜在不稳定的频域6.3.2MOSFET潜在不稳定的频域6.3.3一些稳定电路的例子6.4线性度6.5基本的工作类别:A、AB、B和C类6.6直流偏置6.7推挽放大器6.8RF和微波功率放大器的实际外形参考文献第7章高效率功率放大器设计7.1B类过激励7.2F类电路设计7.3逆F类7.4具有并联电容的E类7.5具有并联电路的E类7.6具有传输线的E类7.7宽带E类电路设计7.8实际的高效率RF和微波功率放大器参考文献第8章宽带功率放大器8.1Bode—Fan0准则8.2具有集中元件的匹配网络8.3使用混合集中和分布元件的匹配网络8.4具有传输线的匹配网络8.5有耗匹配网络8.6实际设计一瞥参考文献第9章通信系统中的功率放大器设计9.1Kahn包络分离和恢复技术9.2包络跟踪9.3异相功率放大器9.4Doherty功率放大器方案9.5开关模式和双途径功率放大器9.6前馈线性化技术9.7预失真线性化技术9.8手持机应用的单片cMOS和HBT功率放大器参考文献
2024/11/4 13:49:37 8.08MB 微波功率放大器
1
超外差式收音机,Multisim仿真电路,包括包络检波电路、电容反馈振荡器电路、高电平调制电路、高频功放电路、高频小信号放大电路、调谐回路、调制及混频电路、中频放大电路
2024/11/2 6:16:33 14.78MB 超外差式收音机 Multisim仿真电路
1
本帖最后由chip2222于2018-11-2122:08编辑重要声明:本和谐补丁仅提供用于学习与熟悉ADS操作之目的,任何情况下不得用于商业盈利的目的,若用于商业盈利,请用Delete_Crack.bat命令自行卸载本补丁,否则由此引起的法律纠纷,本人概不负责!特别说明:本和谐文件中,应用了SSQ的通用的FlexLMECC和谐补丁,特此声明感谢。
本和谐文件中的license文件为原创,如有引用,请注明出处,谢谢。
本和谐补丁经过测试,可以在Windows7下正常运行,其他Windows版本未作测试。
经测试,在ADS2017版中发现的Bug,包括Layout版图、VIA设计、电容优化等功能均可正常运行,欢迎各位网友继续测试其他功能,如有发现,欢迎在本贴中提出,本人将持续改进。
2024/10/21 2:56:56 373KB Keysight ADS Win64 CRACK
1
亲测可用,使用stm32f103驱动,mpr121电容式传感器,电赛时作为一个备选方案写的,可以读取数值。
10.65MB mpr121 stm32
1
RCWL-0506是一款基于红外热释电技术的人体感应自动控制模块。
传感器部分采用双单元高性能热释电探头;
配合专业的处理芯片RCWL-9196;模块的灵敏度高,可靠性强。
放大部分拚弃廉价的电解电容,采用瓷片贴片电容,模块寿命更长。
该模块可应用于楼道灯及各类人体自动感设备。
2024/10/12 17:53:57 1.88MB RCWL-0506 红外热释 人体感应模块
1
共 276 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡