在对网络中的各联络开关按其单独闭合后构成的环路之间的联系进行分类,并辨明了网损目标函数的极小点与系统基本邻域结构的对应关系之后,提出了一种新的大规模三相不平衡配电系统网络重构算法。
该算法隐含并行地在各个邻域结构内进行寻优搜索,其重构结果不依赖于系统的初始拓扑,也不依赖于开关的操作次序。
其寻优能力不劣于模拟退火法,而计算时间却比模拟退火法大大节省。
一般经2次到3次网络寻优遍历,即可获得系统的全局或近似全局最优解
2018/3/19 9:34:40 184KB 配电网 配网重构 潮流
1
在8×8的国际象棋棋盘上,如果在放置若干个马以后,使得整个棋盘的任意空位置上所放置的棋子均能被这些马吃掉,则称这组放置为棋盘的一个满覆盖。
若去掉满覆盖中的任意一个棋子都会使这组放置不再是满覆盖,则称这一满覆盖为极小满覆盖。
有源代码和exe文件,可直接套用运转
2020/11/6 9:46:03 453KB C++课程设计
1
改进斥力场函数和使用虚拟中间目标点法处理传统人工势场法局部极小值问题的MATLAB代码
2022/10/15 17:54:20 1KB MATLAB
1
极小值原理,浅显易懂,讲解很好,易理解,案例明确,过程清晰,很实用。
2019/10/26 5:37:39 1.92MB 极小值原理 控制理论
1
本产品全程使用BourneAgainshell进行编译,次要分为三大块:入口、OpenStack块和shell块。
“入口”为用户数据交互块,用户使用产品时只需对“入口”进行操作;
“OpenStack块”则封装了所有与部署OpenStack相关的脚本,并包含要自动上传的镜像;
而“shell块”次要是根据用户部署习惯将部分常用的shell脚本独立封装成可分离使用的脚本。
本产品使用shell进行编写,除去需上传的镜像占据空间极小,并使用多线程的方式优化了安装速度,因而使用方便,也十分利于试验环境的使用。
2017/9/8 9:37:49 1.48MB install-iaas-new 一键脚本
1
限幅(clipping),是降低OFDM系统PAPR最直接的方法。
根据峰均比的统计特性可知,高峰平比出现的概率极小,削去过高的瞬时高幅值,降低整个系统的误比特率功能,改善CCDF曲线
2020/8/12 20:38:27 3KB Clipping
1
模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法使用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最优分类结果。
2020/2/5 6:05:33 3KB 模糊C-均值 遗传算法
1
这是一本入门的书,其宗旨是向读者引见经典的和现代的图像重建方法.本书涵盖了二维(2D)平行光束和扇形束成像,三维(3D)平行线,平行面,及锥形束成像.包括解析算法和迭代算法.本书还描述了这些算法在X光CT,SPECT,PET,和MRI等医学影像中的应用.本书对最新的研究成果,如使用截断的投影数据精确重建ROI,Katsevich的锥形束滤波反投影(FBP)算法,以及利用l0极小化方法来重建极度欠采样数据.
2018/5/6 14:24:13 2.3MB 医学图像
1
极大极小算法和剪枝法完成一字棋,含源代码和实验报告。
2022/9/4 13:40:47 277KB α-β剪枝法 字棋
1
随着人工智能的火热,机器游戏变得越来越熟悉。
机器博弈是人工智能领域最具挑战性的研究方向之一。
亚马逊国际象棋是机器游戏领域的一个重点研究方向,由于其本身动作空间可能概率的复杂性,第一步便超过2000个动作,因而常被用来研究与机器博弈相关的算法。
本文针对亚马逊国际象棋环境,对比分析了不同算法在效率上的优缺点,主要对蒙特卡洛博弈算法及其并行优化进行介绍和总结,在此基础上,对关于亚马逊棋蒙特卡洛博弈算法并行优化的研究前景进行了展望。
主要内容为关于亚马逊棋的蒙特卡洛博弈算法的并行优化综述,对相关内容进行了调研和总结,首先是引言部分,简要介绍亚马逊棋的相关知识,其次介绍应用于亚马逊棋的相关博弈算法,如:极大化极小法(MiniMax)、Negamax算法、PVS算法和Alpha-Beta等搜索算法。
适用于研究计算机领域、人工智能领域的用户下载研究使用,该文章为原创,严禁盗用抄袭,如有发现,将追究侵权责任,同时涉及学术不端问题。
此前将该文档借与他人浏览,所发布本文档目的在于:避免被学术不端者盗用。
1
共 51 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡