为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。
本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;
随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;
最后,对像素进行聚类划分,从而得到棉花叶片分割结果。
按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。
试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。
分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。
2024/4/14 16:22:47 2.56MB pdf
1
1stOpt一套数学优化分析综合工具软件包。
在非线性回归,曲线拟合,非线性复杂模型参数估算求解,线性/非线性规划等领域傲视群雄,首屈一指,居世界领先地位。
其计算核心是基于七维高科有限公司科研人员十数年的研究成果【通用全局优化算法】(UniversalGlobalOptimization-UGO),该算法之最大特点是克服了当今世界上在优化计算领域中使用迭代法必须给出合适初始值的难题,即用户勿需给出参数初始值,而由1stOpt随机给出,通过其独特的全局优化算法,最终找出最优解。
---------------------------------------------以非线性回归为例,目前世界上在该领域最有名的软件包诸如Matlab,OriginPro,SAS,SPSS,DataFit,GraphPad等,均需用户提供适当的参数初始值以便计算能够收敛并找到最优解。
如果设定的参数初始值不当则计算难以收敛,其结果是无法求得正确结果。
而在实际应用当中,对大多数用户来说,给出(猜出)恰当的初始值是件相当困难的事,特别是在参数量较多的情况下,更无异于是场噩梦。
而1stOpt凭借其超强的寻优,容错能力,在大多数情况下(>90%),从任一随机初始值开始,都能求得正确结果。
2024/3/30 14:24:30 10.1MB 回归 1stopt 规划
1
使用遗传算法,对目标函数进行全局寻优,可以得到全局最优解。
2024/3/28 21:35:11 2KB MATLAB 遗传算法
1
本程序主要用于刚接触粒子群算法的人从一个简单的小例子熟悉该算法的特点和基本流程。
不适合高手看哪,呵呵。
2024/2/13 15:40:41 1KB 粒子群 最优解 matlab
1
c#写的三种寻找最优解的算法;
分别是格点法,单峰区间进退法,和黄金分割法,适合初学者学习使用
2024/2/11 1:29:41 82KB c# winform 界面 最优解
1
针对铝土矿连续磨矿过程球磨机节能降耗问题以及铝土矿来源复杂、品位差异大等特点,提出了球磨机多目标多模型预测控制方法.该方法首先建立状态空间浓度预测模型和粒级质量平衡加权多模型细度预测模型.然后构建了包含磨机排矿浓细度区间控制和经济性能指标的多目标优化结构的多模型预测控制策略.最后采用乘子罚函数法求解控制器局部最优解.仿真及现场试验结果表明了该方案的有效性.
1
考虑智能交通系统中员工在聚集站点上下班,建立车辆调度问题的数学模型。
针对蚁群优化算法的缺点,自适应地改变信息素挥发因子,采用混沌搜索产生初始种群可以加速染色体向最优解收敛,构成一种自适应蚁群优化算法。
应用该算法和基本蚁群优化算法对该模型求解,实验证明了构造算法在收敛速度和寻优结果两方面都优于基本蚁群优化算法
2024/1/30 18:48:49 877KB 车辆调度 机器学习 智能交通
1
该文研究频率选择性信道中多用户点对点分布式中继网络波束形成技术。
为了均衡源节点与中继节点以及中继节点与目标节点之间的频率选择性信道,该文提出的波束形成技术在中继节点上采用有限长响应滤波器和滤波而后转发的中继数据传输方法,以最小化中继节点的发射总功率为目标,同时满足所有目标节点的服务质量(QoS)。
该波束形成优化问题的直接形式由于其非凸性而难以求得最优解。
该文采用半定松弛(SDP)方法将其近似为凸优
1
TSPLIB是来自各种来源和各种类型TSP(以及相关问题)的示例实例库,并且给出了对应各个样例的最优解。
https://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
2024/1/18 2:46:56 112KB Tsp 算法设计 tsp数据样例
1
遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《AdaptationinNaturalandArtificialSystems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
  遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
2024/1/4 8:44:42 910KB 遗传算法
1
共 112 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡