【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
采用tensorflow深度学习框架对手写数字识别的一整套代码
2024/5/16 2:17:47 41.89MB 深度学习 人工智能 手写数字
1
仿照别人的matlab数字识别程序写的,改简单了,并且收敛速度更快了,具体程序解释可以看:http://blog.163.com/mark063_ai/blog/static/17765408120110382017624/欢迎到我的blog讨论人工智能方面的东西~:http://blog.163.com/mark063_ai
2024/5/13 11:22:06 11KB matlab 神经网络 数字分类 识别
1
暑期实训基于C++的手写数字的识别系统,内含实训报告及代码。
2024/5/11 0:12:33 581KB 手写数字识别
1
这是一个研究车牌号码数字识别的综合性工程,从最基本的BP分类,到分别用遗传算法和粒子群算法对BP网络进行优化分类,再到利用Hopfield神经网络对数字进行识别分类。
所有代码均能直接运行,并有准备的结果,并且包括数字号码的图像库,识别结果明确。
由于本人在此花费了不少精力,所以资源分标了10分,希望能对同学的毕业设计起到作用。
1
这是一个用ANN(人工神经网络)对手写数字进行识别的程序。
有以下一些特性:1)前端(网页)用JavaScript,html5,css开发;
2)后端(服务器)用python写的(2.7版本);
3)功能:#支持在网页画布上(用鼠标)写数字,并会返回预测结果;
#支持重置网页画布;
#支持向服务器发送训练样本;
#支持图片预览,图片上传;
#支持对上传的图片中英文字母的识别。
这是一个非常酷的程序,C/S架构,代码也不是很复杂,而且设计了一些很有趣的知识(机器学习,神经网络,http数据传递,前后端开发等等)。
感兴趣的同学可以下载下来看一看,有不懂的可以评论留言。
2024/4/25 9:05:03 5.8MB OCR ANN神经网络 python开发 js+css+html
1
使用74行python代码实现简单的手写数字识别神经网络。
输出值为10000个测试样本中识别正确的图像数量。
2024/4/22 4:07:28 16.21MB 神经网络 python 手写数字识别
1
这个是我自己写的关于手写数字识别的平台,里面包含了手写板实现的代码以及界面,有别于网上其他用控件实现手写板以及数字识别。
2024/4/18 6:19:54 516KB 手写数字识别 手写板代码
1
贝叶斯算法实现手写数字识别原始数据测试(0~9数字,32*32),贝叶斯代码实现手写体识别和大致出错率计算,用于python实现具体逻辑。
2024/4/12 15:13:45 969KB 贝叶斯算法 手写数字 Python
1
1.1要提高图像处理水平,需要从哪些方面努力?2.1编程实现:分别用最近邻插值、双线性插值和双三次插值等方法把一幅图像面积放大9倍,并对放大效果进行比较。
2.2提出将像素宽度的m通路转换为4通路的一种算法(习题2.13),并编程实现。
3.1编程实现图像反转、对数变换和对比度拉伸。
3.2试提出一种如3.3.4节中讨论的基于直方图统计的局部增强方法,并编程实现。
3.3编程实现中值滤波、Soble运算和Laplacian锐化。
3.4对掌纹图像进行图像增强,使得掌纹纹线更清晰。
说明增强方案,并编程实现。
4.1编程实现等效于3*3邻域均值平滑的频率域滤波。
4.2编程实现同态滤波以及巴特沃思低通、高通、带通、带阻滤波器。
4.3习题4.43。
5.1编程实现可变阈值处理。
5.2编程实现Ostu图像分割方法。
5.3设计人脸方案,并编程实现。
5.4设计与实现虹膜图像分割。
6.1编程实现边界追踪算法。
6.2编程实现二值区域细化算法。
6.3编程实现灰度共生矩阵方法。
6.4习题11.16。
6.5习题11.27。
7.1编程实现印刷体数字识别(包括增强、分割、特征提取和识别)。
7.2编程实现桃子图像识别,要求能使识别蟠桃、水蜜桃、油桃、黄桃等亚种。
(包括增强、分割、特征提取和识别)
2024/4/11 4:39:24 10.24MB VC++
1
共 161 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡