针对于粒子群优化进入前期患上到解的精度低,不平稳的下场,提出了一种改善的自顺应的算法,付与惯性权重线性减小,对于告成的减速系数暴发影像,并于下一代更新中以未必概率唤醒影像,经由仿其实验,评释能够实用的处置了前期精度差,不平稳的下场。
2023/3/23 14:45:18 264KB 粒子群算法
1
MC9S12HY64(板子是DEMO9S12HY64)上的休眠按键唤醒例程。
板子得电后,LED闪烁20下后,休眠。
按SW3键后,MCU唤醒,LED闪烁20下后,休眠。
如此反复。
2023/3/20 1:12:36 584KB MC9S12 休眠 唤醒
1
ESP32-LyraTD-MSC语⾳开发板是⼀款声学回声消除(AcousticEchoCancelation,AEC)处理⽅案,⽀持语⾳识别和近/远场语⾳唤醒,使⽤ESP32对AAC、FLAC、OPUS、OGG、MP3等格式⾳频进⾏解码,实现⽆损⾳频输出。
它还⽀持接⼊百度DurOS和亚⻢
2023/3/14 18:33:07 11.33MB esp32 duerOS 百度语音 语音唤醒
1
这是以MFC界面显示先来先服务的进程调度模拟控制源码,有创建进程,阻塞进程唤醒进程的功能,还有友好提示和执行进程的进度条显示,很智能哦!界面也很清爽好看,对学习MFC界面设计和进程算法有很大协助,值得收藏!
2023/3/4 4:09:50 3.33MB 操作系统 先来先服务 MFC界面
1
通过语音唤醒和识别控制使用执行所需要的命令操作,简化用户操作
2023/2/20 21:32:06 103.51MB demo
1
海思低功耗WIFI门铃方案(Hi3518EV300+Hi1131s+MCU+LiteOS)一、具体方案实现:  1、硬件设计电源管理是核心。
  2、设备固件开发LiteOS+唤醒。
  3、音视频平台+唤醒服务器。
  4、APP可免费提供源码参考,需要请留言。
二、目前使用:WIFI门铃;
WIFI视频门锁;
WIFI猫眼;
低功耗猫眼
2023/2/14 20:52:11 392KB Hi3518EV300 liteos 海思低功耗
1
本资源为非常不错的一套王网传资源,是继之前上传的基础班的升级版,愈加全面,资源过大,上传乃是下载链接,如失效请留言!!!资源远大于5积分,不多说,下面直接上目录:APC机制I5J$i:U0f1r:O9B(Q"b│01APC的本质.mp4│02备用Apc队列.mp4:U8p7]3f"w$b0?5Z9`0H8G*[│03APC挂入过程.mp48g!H4s1V;]+b4Y9H0L-B│04内核APC执行过程.mp4│05用户APC执行过程.mp4│├─事件等待'x%`"J'}?&S:t']#I5\5G│01临界区.mp4-o(U$W9O+`~0u4~,@.\│02自旋锁.mp4)c3~.J&L,V&s.Q8x/[.w│03线程等待与唤醒.mp4#b*^"k$d#O3f8t8a3k│04WaitForSingleObject函数分析.mp4$V7L'C3I(W│05事件.mp4│06信号量.mp4│07互斥体.mp4│├─保护模式-}!n!C$O/s"Q│014中断门.mp4,B'i,r7Y:B3|!N(^6{l9F│015陷阱门.mp4│017任务段_下.mp4,|/M#A:K3T7i*Q/?I&o&D;p│018任务门.mp46m.D+f4_/V)~9S&B│01910-10-12分页.mp4│020PDE_PTE.mp4│021PDE_PTE属性(P_RW).mp43~/]1x5{4u:{$I│022PDE_PTE属性(US_PS_A_D).mp4│023页目录表基址.mp4│024页表基址.mp4$Af'[+g6}5F;e│0252-9-9-12分页.mp4│0262-9-9-12分页(下).mp4-~'~9i0T5f"p2U$j│027TLB.mp4│028中断与异常.mp4│029控制寄存器.mp46j2l3j)O#{%{4w│030PWT_PCD属性.mp4│031保护模式阶段测试.mp4│_001保护模式.mp4,I;c5X~)t1d1}8S#f3i:b│_002段寄存器结构.mp48n-|-i(H$^*f│_003段寄存器属性探测.mp4│_004段描述符与段选择子.mp4│_005段描述符属性_P位_G位.mp4│_006段描述符属性_S位_TYPE域.mp4│_007段描述符属性_DB位.mp4│_008段权限检查.mp4│_009代码跨段跳转流程.mp4&S#i9i-\0D"@1U-P│_010代码跨段跳转实验.mp4"@*S2Y-a-S6n7n:~│_011长调用与短调用.mp4│_012调用门_上.mp4;[)_2c8A5F%}!u%]:~.N│_013调用门_下.mp4│├─内存管理│01线性地址的管理.mp4;?|+^5i&}│02PrivateMemory.mp4*@3B(Y6^y-{│03MappedMemory.mp4│04物理内存的管理.mp4'[8C6q\1H8w"H2]0Y│05无处不在的缺页异常.mp4│├─句柄表│01句柄表.mp4│02全局句柄表.mp4│5h"u"i&{+G4T+E├─异常│01CPU异常记录.mp4│02模拟异常记录.mp4:K0J(d1
1
PIC16F151X和PIC16LF151X器件:高功能RISCCPU:•优化的C编译器架构•仅需学习49条指令•可寻址最大28KB的线性程序存储空间•可寻址最大1024字节的线性数据存储空间•工作速度:-DC–20MHz时钟输入(2.5V时)-DC–16MHz时钟输入(1.8V时)-DC–200ns指令周期•带有自动现场保护的中断功能•带有可选上溢/下溢复位的16级深硬件堆栈•直接、间接和相对寻址模式:-两个完全16位文件选择寄存器(FileSelectRegister,FSR)-FSR可以读取程序和数据存储器灵活的振荡器结构:•16MHz内部振荡器模块:-可通过软件选择频率范围:31kHz至16MHz•31kHz低功耗内部振荡器•外部振荡器模块具有:-4种晶振/谐振器模式,频率最高为20MHz-3种外部时钟模式,频率最高为20MHz•故障保护时钟监视器(Fail-SafeClockMonitor,FSCM)-当外设时钟停止时可使器件安全关闭•双速振荡器启动•振荡器起振定时器(OscillatorStart-upTimer,OST)模拟特性:•模数转换器(Analog-to-DigitalConverter,ADC):-10位分辨率-最多28路通道-自动采集功能-可在休眠模式下进行转换•参考电压模块:-具有1.024V、2.048V和4.096V输出的固定参考电压(FixedVoltageReference,FVR)•温度指示器采用nanoWattXLP的超低功耗管理PIC16LF151X:•休眠模式:20nA(1.8V时,典型值)•看门狗定时器:300nA(1.8V时,典型值)•辅助振荡器:600nA(32kHz时)单片机特性:•工作电压范围:-2.3V-5.5V(PIC16F151X)-1.8V-3.6V(PIC16LF151X)•可在软件控制下自编程•上电复位(Power-onReset,POR)•上电延时定时器(Power-upTimer,PWRT)•可编程低功耗欠压复位(Low-PowerBrown-OutReset,LPBOR)•扩展型看门狗定时器(WatchdogTimer,WDT)•通过两个引脚进行在线串行编程(In-CircuitSerialProgramming™,ICSP™)•通过两个引脚进行在线调试(In-CircuitDebug,ICD)•增强型低电压编程(Low-VoltageProgramming,LVP)•可编程代码保护•低功耗休眠模式•低功耗BOR(LPBOR)外设特点:•最多35个I/O引脚和1个仅用作输入的引脚:-高灌/拉电流:25mA/25mA-可单独编程的弱上拉-可单独编程的电平变化中断(Interrupt-On-Change,IOC)引脚•Timer0:带有8位预分频器的8位定时器/计数器•增强型Timer1:-带有预分频器的16位定时器/计数器-外部门控输入模式-低功耗32kHz辅助振荡器驱动器•Timer2:带有8位周期寄存器、预分频器和后分频器的8位定时器/计数器•两个捕捉/比较/PWM(Capture/Compare/PWM,CCP)模块:•带有SPI和I2CTM的主同步串行口(MasterSynchronousSerialPort,MSSP):-7位地址掩码-兼容SMBus/PMBusTM•增强型通用同步/异步收发器(EnhancedUniversalSynchronousAsynchronousReceiverTransmitter,EUSART)模块:-兼容RS-232、RS-485和LIN-自动波特率检测-接收到启动位时自动唤醒
2023/2/9 10:11:05 5.76MB PIC16F1516 PIC16F1517 PIC16F1518 PIC16F1519
1
最新下载的讯飞SDK还有自己开发的示例代码,主要是语音识别和唤醒还有相关的引见
2023/1/13 1:04:28 49.28MB AndroidXunfe
1
Linux下通过WakeOnLAN网络近程唤醒开机的实例操作说明及wol的rpm包。
参见blog.ishareread.com
2019/9/8 19:01:52 431KB Linux wol
1
共 83 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡