基于小波变换的数字水印嵌入与提取_matlab代码,小波变换,水印嵌入,水印提取,MATLAB亲测可用,谢谢支持。
2025/6/2 1:26:56 85KB 水印嵌入提取
1
摘 要:针对电网谐波测量中的镜像效应,选用MAX291作为抗混叠滤波器,并讨论了实际应用中工艺和抗干扰问题。
   关键词:谐波测量;
镜像效应;
MAX291;
干扰1 问题的提出  随着现代工业的迅速发展,用户对电能质量的要求越来越高,为此国家颁布了一系列标准,其中电网谐波就是最重要的一个指标[1]。
谐波监测为提高电网电能质量、保证电网安全运行以及电网治理提供保证。
  对电网信号进行高次谐波分析时,一般采用离散傅里叶变换。
离散傅里叶变换意味着在时间域和频率域两方面的周期化,周期化的结果带来一些新问题,这就是镜像效应和频率泄漏。
镜像效应是由于抽样的频率不够高,在频率域周期化时产生了频谱的折叠而引起的
1
S变换源程序,工具包,希望能帮到大家,希望能交到朋友,也希望大家能不设置积分就可以下载东西,毕竟我们是来学习的
2025/6/1 2:03:04 332KB S变换
1
内容简介······本书专门讲述积分方法,涵盖各种函数积分的方法,从初等函数到特殊函数,从实变函数到复变函数.本书以方法为中心、以算例为导向,读者可在算例的引导下,逐步掌握积分之方法.本书从易到难,由浅入深,适用不同层次、不同群体的人阅读,他们可以是初学微积分的大学生,可以是已经学过微积分的研究生,也可以是有工作经验的科学家、工程师。
作者简介······金玉明,中国科学技术大学教授、博导。
1977-1992为创建我国**台同步輻射加速器而工作。
任“国家同步輻射实验室工程”(这是由国家计委命名的我国**个国家实验室)副总工程师,负责同步輻射加速器的物理设计。
该项目于1991年完成,于1992年获中国科学院科研成果特等奖,1995年获国家科技进步一等奖。
目录······前言绪论第1章不定积分1.1不定积分中的原函数概念1.2分项积分法1.3分部积分法1.3.1分部积分法的基本公式1.3.2分部积分法的推广公式1.4换元积分法1.5三角替代法1.6欧拉替换法1.7三角函数积分中的倍角法1.8倍角法的应用1.8.1在函数sinpx,cosqx,sinpxcosqx的积分中(p,q为正整数,或奇整数,或偶整数)1.8.2倍角法应用在含有三角函数与指数函数的积分1.9secnx和cscnx的积分1.10tannx和cotnx的积分1.11有理代数分式的积分法1.12无理代数函数的积分法1.13含有三角函数的有理式的积分法1.13.1一般的方法1.13.2微分积分法1.13.3XX替换法1.14含有双曲函数的有理式的积分法1.15配对积分法(组合积分法)第2章定积分2.1定积分的定义2.1.1黎曼定义2.1.2面积求和法的定义——曲线下的面积2.2定积分的基本公式和常用法则2.2.1定积分的基本公式2.2.2定积分中的几个常用法则2.3欧拉积分、欧拉常数及其他常用常数2.3.1B函数(Betafunction)2.3.2Γ函数(Gammafunction)2.3.3几个重要常数2.4定积分中的分部积分法2.5定积分中的换元法2.6含参变量的积分法2.7无穷级数积分法2.8反常积分(Improper)2.8.1反常积分的定义2.8.2反常积分存在的判别法2.8.3反常积分算例2.8.4伏汝兰尼(Froullani)积分2.8.5罗巴切夫斯基(Lobachevsky)积分法2.8.6一个通用的积分法则2.8.7有关欧拉常数γ的几个积分2.9定积分的近似计算2.9.1近似计算的方法2.9.2近似计算算例2.9.3近似计算的误差估算第3章定积分的应用3.1面积的计算3.1.1用定积分的定义来计算面积3.1.2几种常见曲线围成的面积的计算3.2曲线长度的计算3.3体积的计算3.3.1用逐次积分法计算体积3.3.2利用横截面计算体积3.3.3回旋体的体积3.4表面积的计算3.4.1投影法计算表面积3.4.2回旋体的侧面积计算法第4章重积分4.1二重积分4.1.1二重积分的定义及算例4.1.2二重积分上、下限的确定——穿线法4.1.3几个典型的积分次序及积分限变换的例子4.1.4两个一元函数乘积的积分4.2三重积分4.2.1三重积分的定义4.2.2三重积分的傅比尼定理4.2.3三重积分的算例4.3重积分的坐标变换4.3.1二重积分的坐标变换4.3.2三重积分的坐标变换4.3.3n重积分的坐标变换第5章曲线积分和曲面积分5.1曲线积分5.1.1XX型曲线积分5.1.2第二型曲线积分5.1.3曲线积分的应用5.2格林(Green)公式5.3曲面积分5.3.1XX型曲面积分5.3.2第二型曲面积分5.4斯托克斯(Stokes)公式5.5高斯(Gauss)公式5.6高斯公式和斯托克斯公式在场论中的应用5.6.1高斯公式在场论中的应用5.6.2斯托克斯公式在场论中的应用第6章傅里叶积分和积分变换6.1傅里叶(Fourier)积分6.1.1傅里叶级数6.1.2傅里叶积分公式6.2傅里叶变换及其性质6.2.1傅里叶变换6.2.2傅里叶变换的性质6.2.3傅里叶余弦变换和正弦变换6.2.4傅里叶变换及傅里叶余弦变换和正弦变换算例6.2.5傅里叶变换的应用6.3拉普拉斯(Laplace)变换6.3.1拉普拉斯变换6.3.2拉普拉斯变换的性质6.3.3单项式的拉普拉斯变换算例6.3.4拉普拉斯逆变换6.3.5拉普拉斯变换的应用第7章复变函数的积分7.1复变函数的概念7.1.1复数和复平面7.1.2复数
2025/5/30 8:56:04 33.28MB 金玉明 顾新身  毛瑞庭 微积分
1
本文档的主要内容详细介绍的是《华为模拟电路讲义上下册合集》  模拟电路是指用来对模拟信号进行传输、变换、处理、放大、测量和显示等工作的电路。
模拟信号是指连续变化的电信号。
模拟电路是电子电路的基础,它主要包括放大电路、信号运算和处理电路、振荡电路、调制和解调电路及电源等。
2025/5/29 12:15:33 1.81MB 综合文档
1
第一部分引导篇第一章OpenGL与三维图形世界第二章OpenGL概念建立第三章WindowsNT环境下的OpenGL第二部分基础篇第一章OpenGL基本程序结构第二章OpenGL数据类型和函数名第三章OpenGL辅助库的基本使用第四章OpenGL建模第五章OpenGL变换第六章OpenGL颜色第七章OpenGL光照第三部分提高篇第一章OpenGL位图和图像第二章OpenGL纹理第三章OpenGL复杂物体建模第四章OpenGL特殊光处理第五章OpenGL效果处理第六章OpenGL显示列表第七章OpenGL帧缓存和动画第四部分辅助篇第一章在微机环境下OpenGL编程使用方法第二章计算机图形学词汇解释
2025/5/27 15:43:02 1.77MB OpenGL 三维 图形 Windows
1
图象几何变换:将图片ColorfulRose贴在,上半球面x2+y2+z2=1002,并显示正视图和俯视图。
matlab实现,步骤:插值到圆形区域,向后映射。
2025/5/27 0:17:19 15.96MB matlab 数字图像处理
1
三相电压型逆变器SIMULINK仿真,采用双闭环控制,控制方法为对电压和电流进行解耦变换到旋转dq0坐标系。
开关管电流峰值为45A左右。
负载线电压有效值为220V,频率为50Hz,负载电压波形三相对称。
2025/5/26 18:54:01 22KB 三相逆变器 双闭环 开关管电流小
1
设计一个请求页式存储管理方案。
并编写模拟程序实现之。
要求包含:1.过随机数产生一个指令序列,共320条指令。
其地址按下述原则生成:①50%的指令是顺序执行的;
②25%的指令是均匀分布在前地址部分;
③25%的指令是均匀分布在后地址部分;
#具体的实施方法是:在[0,319]的指令地址之间随机选区一起点M;顺序执行一条指令,即执行地址为M+1的指令;
在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’;顺序执行一条指令,其地址为M’+1;
在后地址[M’+2,319]中随机选取一条指令并执行;
重复A—E,直到执行320次指令。
2.指令序列变换成页地址流设:(1)页面大小为1K;
用户内存容量为4页到32页;
用户虚存容量为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条—第9条指令为第0页(对应虚存地址为[0,9]);
第10条—第19条指令为第1页(对应虚存地址为[10,19]);





















第310条—第319条指令为第31页(对应虚存地址为[310,319]);
按以上方式,用户指令可组成32页。
3.计算并输出下述各种算法在不同内存容量下的命中率。
FIFO先进先出的算法LRU最近最少使用算法OPT最佳淘汰算法
2025/5/25 19:16:15 44KB fifo lru opt
1
小波变换C语言实现,包括harr,db1等小波基,具体小波基可以更改代码中滤波函数即可。
2025/5/25 3:21:26 9KB 小波变换
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡