随着无线通信技术、嵌入式技术以及智能传感器技术的发展,无线传感器网络己成为近年来国内外的热门研究领域。
无线传感器网络的研究必须将现代的微电子技术、系统SOC芯片设计技术、纳米技术、无线信息通讯技术、计算机网络技术等融合,以实现其集成化、系统化、网络化,特别是实现无线传感器网络特有的超低功耗设计。
近年來,ZigBee技术作为无线传感器网络技术的代表越来越受到人们的关注。
ZigBee定位技术是面向低成本设备的无线定位技术,ZigBee无线定位技术以其低功耗、低成本、分布式和高可靠性等特点给无线定位领域带来了一场巨大变革。
2025/6/28 15:16:14 6.38MB zigbee 定位
1
区块链作为一种新兴的应用模式,在金融服务、供应链管理、文化娱乐、智能制造、社会公益和教育就业等领域有着广泛的应用价值。
近几年来,区块链技术和应用正经历快速发展的过程。
与此同时,国内国际上区块链领域的标准仍属空白,行业发展碎片化,行业应用存在一定的盲目性,不利于区块链的应用落地和技术发展。
区块链的标准化有助于统一对区块链的认识,规范和指导区块链在各行业的应用,以及促进解决区块链的关键技术问题,对于区块链产业生态发展意义重大。
目前,国内外标准化组织已将区块链标准化提上议事日程,开展了组织建设、标准预研等一系列工作,并初步取得了一定进展。
2025/6/28 15:08:11 890KB 区块链 架构
1
一芯FirstChip已发布新FC1179主控的量产工具,版本号为20180903,是目前最稳定的版本,之前的版本可能会遇到一些bug,所以建议使用此版,首先确定主控是不是一芯FC1179,然后把U盘插上使用本工具量产即可,不会用的可以参考博主的教程。
更新日志:1、提升B16/B17开卡及BIN级良率2、优化HDBENCH随机写速度3、解决HDBENCH后对比失败问题4、解决多次系统格式化失败问题5、解决厂商信息显示不正常问题6、提升Micron/Intel双贴开卡良率及稳定性7、将之前1178+B16/B17/B05/L05的专用工具,合并到该版本中,可以使用同一版工具。
1
一个实例搞定MATLABGUI界面设计,以图像二值化处理为例。
2025/6/28 9:37:19 95KB MATLAB GUI 图像处理
1
《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
汇编的递归子程序实现阶乘部分代码DATAsegmenttishidb'intputN(0~7):$'jieguodb0dh,0ah,'jieguois:$'quitdb0dh,0ah,'pressanykeytoexit...$'DATAendsSTACKsegmentdb100dup(?)STACKendsCODEsegmentassumecs:CODE,ss:STACK,ds:DATAmainprocfarstart:movax,DATAmovds,ax;初始化数据段movah,09hleadx,tishi;输出提示int21hxorax,ax;清零movah,01hint21h;键盘输入数据movah,00handal,0fh;转化为非压缩的BCD码callsubproc;调用子过程movbx,dxmovah,09h;输出提示leadx,jieguoint21hmovax,bxcalldisplay;调用子过程movah,09hleadx,quit;输出提示。








2025/6/27 13:27:42 4KB 递归 算法 汇编
1
VuejsHEREMaps测试项目使用Vuejs的简单HEREMaps实现项目设置npminstall编译和热重装以进行开发npmrunserve编译并最小化生产npmrunbuild运行测试npmruntest整理和修复文件npmrunlint自定义配置请参阅。
2025/6/27 10:30:22 124KB Vue
1
集成开发环境(IDE,IntegratedDevelopmentEnvironment)是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。
集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务套。
所有具备这一特性的软件或者软件套(组)都可以叫集成开发环境。
如微软的VisualStudio系列,Borland的C++Builder、Delphi系列等。
该程序可以独立运行,也可以和其它程序并用。
IDE多被用于开发HTML应用软件。
例如,许多人在设计网站时使用IDE(如HomeSite、DreamWeaver等),因为很多项任务会自动生成。
2025/6/27 7:16:37 122.12MB ADSv1.2 IDE
1
《精通D3.js:交互式数据可视化高级编程》以当前流行的数据可视化技术D3.js为主要内容,分为三大部分,共计13章。
第一部分讲述基础知识,第二部分学习制作各种常见图表,第三部分讲解交互式图表及地图的进阶应用。
《精通D3.js:交互式数据可视化高级编程》是一个相对完整的D3.js教程,讲解此技术所有重要的知识点,既有基础入门知识,又有相对深入的内容。
笔者秉持以下原则:由易到难,循序渐进,图文并茂,清晰易懂。
2025/6/27 0:55:31 11.1MB D3.js 数据可视化
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡