第一章人工神经网络…………………………………………………3§1.1人工神经网络简介…………………………………………………………31.1人工神经网络的起源……………………………………………………31.2人工神经网络的特点及应用……………………………………………3§1.2人工神经网络的结构…………………………………………………42.1神经元及其特性…………………………………………………………52.2神经网络的基本类型………………………………………………62.2.1人工神经网络的基本特性……………………………………62.2.2人工神经网络的基本结构……………………………………62.2.3人工神经网络的主要学习算法………………………………7§1.3人工神经网络的典型模型………………………………………………73.1Hopfield网络…………………………………………………………73.2反向传播(BP)网络……………………………………………………83.3Kohonen网络…………………………………………………………83.4自适应共振理论(ART)……………………………………………………93.5学习矢量量化(LVQ)网络…………………………………………11§1.4多层前馈神经网络(BP)模型…………………………………………124.1BP网络模型特点 ……………………………………………………124.2BP网络学习算法………………………………………………………134.2.1信息的正向传递………………………………………………134.2.2利用梯度下降法求权值变化及误差的反向传播………………144.3网络的训练过程………………………………………………………154.4BP算法的改进………………………………………………………154.4.1附加动量法………………………………………………………154.4.2自适应学习速率…………………………………………………164.4.3动量-自适应学习速率调整算法………………………………174.5网络的设计………………………………………………………………174.5.1网络的层数…………………………………………………174.5.2隐含层的神经元数……………………………………………174.5.3初始权值的选取………………………………………………174.5.4学习速率…………………………………………………………17§1.5软件的实现………………………………………………………………18第二章遗传算法………………………………………………………19§2.1遗传算法简介………………………………………………………………19§2.2遗传算法的特点…………………………………………………………19§2.3遗传算法的操作程序………………………………………………………20§2.4遗传算法的设计……………………………………………………………20第三章基于神经网络的水布垭面板堆石坝变形控制与预测§3.1概述…………………………………………………………………………23§3.2样本的选取………………………………………………………………24§3.3神经网络结构的确定………………………………………………………25§3.4样本的预处理与网络的训练……………………………………………254.1样本的预处理………………………………………………………254.2网络的训练……………………………………………………26§3.5水布垭面板堆石坝垂直压缩模量的控制与变形的预测…………………305.1面板堆石坝堆石体垂直压缩模量的控制……………………………305.2水布垭面板堆石坝变形的预测……………………………………355.3BP网络与COPEL公司及国内的经验公式的预测结果比较…35§3.6结论与建议………………………………………………………………38第四章BP网络与遗传算法在面板堆石坝设计参数控制中的应用§4.1概述………………………………………………………………………39§4.2遗传算法的程序设计与计算………………………………………………39§4.3结论与建议…………………………………………………………………40参考文献…………………………………………………………………………
2023/8/2 9:24:30 1.66MB 人工神经网络
1
人工神经网络理论、设计及应用_第2版,韩力群编著。
该书系统的介绍了人工神经网络的主要理论和设计基础,给出了大量的实例,由浅到深,通俗易懂。
2023/7/24 5:33:43 25.79MB 人工神经网络
1
遗传算法改进BP人工神经网络,有利于大家将模式识别精度提高。
2023/7/12 12:12:04 3KB 神经网络
1
MATLAB经典案例的一些代码,给初学者提供帮助。
本书系统介绍了禁忌搜索、模拟退火、遗传算法、人工神经网络和拉格朗日松弛等现代优化计算方法的模型与理论、应用技术和应用案例。
作为最优化算法的总结,包括了主要的搜索算法,NP问题,遗传算法,神经网络,拉格朗日松弛,对计算机优化计算提供理论基础。
2023/7/5 9:44:54 215KB MATLAB
1
韩力群的人工神经网络,虽然比较老了,但是一些知识点讲的深入浅出,很适合初学者学习,里面包含了带标签的pdf和配套ppt。
2023/6/29 3:42:35 6.81MB 神经网络
1
本书将理论知识、科学研究和工程实践有机结合起来,介绍了数字图像处理和识别技术的方方面面,内容包括图像的点运算、几何变换、空域和频域滤波、图像复原、形态学处理、图像分割以及图像特征提取。
本书还对于机器视觉进行了前导性的探究,重点介绍了两种在工程技术领域非常流行的分类技术——人工神经网络(ann)和支持向量机(svm),并在配套给出的识别案例中直击光学字符识别(ocr)和人脸识别两大热点问题。
全书结构紧凑,内容深入浅出,讲解图文并茂,适合于计算机、通信和自动化等相关专业的本科生、研究生以及工作在图像处理和识别领域一线的广大工程技术人员阅读。
2023/6/11 14:20:30 41.82MB 图像处理 机器视觉
1
一般的单级倒立摆神经网络控制,matlab仿真已实现,共同学习
2023/6/3 11:57:55 328KB 人工神经网络 BP算法 倒立摆
1
本论文研究的是基于PCNN的彩色图像自动分割的研究与分析,PCNN是第三代人工神经网络,是最新的研究技术。
彩色图像分割,HSV空间。
2023/6/3 7:20:52 1.53MB PCNN 图像分割
1
人工神经网络的hopfield算法,处理TSP的最佳路径问题,可以从多个城市中找到最佳的行走路径,实现智能化,算法主要的MATLAB里面实现,各调用函数也有。
1
利用TensorFlow完成人工神经网络的bp算法,采用五折j交叉验证
2023/2/7 13:46:07 3KB ANN python
1
共 77 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡