高光谱成像的应用效果非常依赖于所获取的图像信噪比(SNR)。
在高空间分辨率下,帧速率高、信噪比低,由于光谱成像包含了两维空间-光谱信息,不能使用时间延迟积分(TDI)模式解决光能量弱的问题;目前多采用摆镜降低应用要求,但增加了体积和质量,获取的图像不连续,且运动部件降低了航天的可靠性。
基于此,将超高速电子倍增与成像光谱有机结合,构建了基于电子倍增的高分辨率高光谱成像链模型,综合考虑辐射源、地物光谱反射、大气辐射传输、光学系统成像、分光元件特性、探测器光谱响应和相机噪声等各个环节,可用于成像链路信噪比的完整分析。
采用LOWTRAN7软件进行大气辐射传输计算,对不同太阳高度角和地物反射率计算像面的照度,根据电子倍增电荷耦合器件(EMCCD)探测器的噪声模型,计算出不同工作条件下的SNR。
对SNR的分析和实验,选择适当的电子倍增增益,可使微弱光谱信号SNR提高6倍。
2024/2/10 13:49:08 10.84MB 探测器 高光谱成 信噪比 电子倍增
1
提出了基于光强检测方式的空芯光纤表面等离子体共振(SPR)传感器。
采用波长为532nm的激光作为光源,对所设计传感器的性能进行了研究,并采用光传输模型对传感器的性能进行了理论分析,所得理论结果与实验结果相符。
传感器在线性区的最高灵敏度和最佳分辨率分别达到8380.3μW/RIU和5.5×10-6RIU。
相比于波长检测型空芯光纤SPR传感器,所提传感器的分辨率提高了2个数量级,且实验系统简单,有利于器件的进一步小型化。
2024/2/10 10:32:36 4.15MB 传感器 空芯光纤 光强检测 表面等离
1
PAM4和相干是两个行业领先的解决方案,可提供更大的带宽和传输距离。
在比较100GDWDMPAM4与相干光模块时,它取决于网络需要哪些功能并从中受益。
在本文中,我们将分析这两种选择,以帮助企业做出明智的决定。
2024/2/9 8:47:12 56KB 100GDWDM PAM4 相干
1
基于CocosCreator的切水果小游戏的实现源码,实现了基本的界面、逻辑、刀光特效、水果特效、炸弹特效等等,图片素材来源于网上,有问题随时私信。
2024/2/9 6:01:18 2.14MB CocosCreator 水果忍者 JavaScript 小游戏
1
胡光锐,徐昌庆编著,上海交通大学819信号系统与信号处理,以及通信所用书籍,俗称白皮书。
2024/2/8 10:40:41 7.71MB 白皮书,819
1
课后习题解答,课后习题C语言程序设计教程(第二版),李含光等人编写
2024/2/8 6:56:15 1.6MB C语言
1
报道了一种由宽带光纤环形镜(FLM)作为腔反射元件的法布里珀罗腔掺磷光纤拉曼激光器(RFL),并与使用窄带光纤布拉格光栅(FBG)作为高反镜的腔结构进行了对比研究。
研究结果表明,使用宽带FLM替代FBG仍可实现掺磷RFL的窄带激光输出,并且可有效避免拉曼激光从高反镜端的泄漏。
在相同的输出镜反射率情况下,使用FLM作为高反镜比使用FBG作为高反镜具有更低的振荡阈值和更高的光光转换效率。
当抽运功率为9.45W时,拉曼激光(1.24μm)输出功率为4.31W,激光器斜效率和光光转换效率分别为57.9%和45.6%。
1
这是香港理工大学的多光谱图像库中的近红外光手掌图像库,也就是掌静脉图像库,共500人
2024/2/6 11:25:36 155.15MB 静脉图像库
1
一、单元内容总述1.本单元主题:本单元课文主要是围绕“爱”这个专题进行编排的。
主要由《司马光》《掌声》《灰雀》和《手术台就是阵地》四篇课文组成。
编排意图是引导学生阅读这些故事,感受人物的仁爱之情,学会理解课文的意思。
2.本单元重点:本单元的重点是:学习带着问题默读,理解课文的意思。
本单元的四篇课文都安排了默读课文,边读边想的练习。
《掌声》中的“默读课文,一边读一边想,英子前后有什么变化?为什么会有这样的变化?”《灰雀》安排了练习“默读课文,想一想,列宁和小男孩在对话的时候,他们各自心里想的是什么。
”《手术台就是阵地》的重点要求是“默读课文,说说你对‘手术台就是阵地’的理解。
1
提出一种基于维纳-辛钦定理计算光学相干层析成像(OCT)系统轴向分辨率δz的通用方法:对光源的功率谱密度分布进行傅里叶逆变换,得到其自相干函数,由其半峰全宽值来获得δz。
利用该方法计算了高斯和非高斯分布光谱光源OCT系统的δz,通过与厂商给出的产品标称值相比较,验证了本方法对于高斯和非高斯分布光谱光源的正确性。
以超宽带白光光源为例,使用滤光片滤除边缘部分光谱后形成非高斯分布光谱,搭建实验系统,实测δz,所得结果与本方法的计算结果较为接近,实验验证了本方法的正确性。
本方法对于非高斯分布光谱光源OCT系统δz的计算结果,能为系统设计时的参数考虑与器件选择等提供依据。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡