GDI+SDK参考(翻译版本)序言 4目标 4适用范围 4适用读者 4运行环境 4文档组织 4相关主题 4GDI+的安全考虑 6检验构造函数调用成功与否 6分配缓冲区 6错误校验 8线程同步 9相关主题 10关于GDI+ 11GDI+介绍 11GDI+概览 11GDI+的三个组成部分 11基于类的接口架构 12GDI+提供了哪些新东西? 12新特征 12编程模式的改变 15线条、曲线和图形 19矢量图概览 19钢笔、线条和矩形 20椭圆和弧 22多边形 22基数样条 23贝塞尔样条 24路径 25画刷和填充图形 27开放与闭合曲线 29区域 30裁剪 31路径平直化 32线条和曲线的抗锯齿功能 32图象、位图和图元文件 33位图类型 34图元文件 37绘制、定位和复制图片 39裁剪和缩放图象 40坐标系统和转换 42坐标系统类型 42以矩阵来表示转换 44全局和局部转换 48图形容器 51使用GDI+ 56使用入门 56绘制线条 56绘制字符串 58使用钢笔绘制线条和形状 59使用钢笔绘制线条和矩形 59设置钢笔的宽度和对齐方式 60绘制具有线帽的线条 61联接线条 62绘制自定义虚线 62绘制用纹理填充的线条 63使用画笔填充形状 63用纯色填充形状 64用阴影图案填充形状 64用图像纹理填充形状 64在形状中平铺图像 65用渐变色填充形状 68使用图像、位图和图元文件 68加载和显示位图 68加载和显示图元文件 69记录图元文件 69剪裁和缩放图像 71旋转、反射和扭曲图像 72缩放时使用插值模式控制图像质量 73创建缩略图像 75采用高速缓存位图来提高性能 76通过避免自动缩放改善性能 76读取图像元数据 77使用图像编码器和解码器 83列出已安装的编码器 83列出已安装的解码器 84获取解码器的类标识符 86获取编码器的参数列表 88将BMP图像转换为PNG图像 100设定JPEG的压缩等级 101对JPEG图像进行无损变换 102创建和保存多帧图像 105从多帧图像中复制单帧 107Alpha混合线条和填充 109绘制不透明和半透明的线条 109用不透明和半透明的画笔绘制 110使用复合模式控制Alpha混合 111使用颜色矩阵设置图像中的Alpha值 112设置单个象素的alpha值 114使用字体和文本 115构造字体系列和字体 115绘制文本 116格式化文本 117枚举已安装的字体 120创建专用的字体集合 122获取字体规格 126对文本使用消除锯齿效果 130构造并绘制曲线 131绘制基数样条曲线 131绘制贝塞尔样条 133用渐变画刷填充形状 134创建线性渐变 134创建路径渐变 137将Gamma校正应用于渐变 144构造并绘制路径 145使用线条、曲线和形状创建图形 145填充开放式图形 147使用图形容器 147管理Graphics对象的状态 148使用嵌套的Graphics容器 151变换 154使用世界变换 154为什么变换顺序非常重要 155使用区域 156对区域使用点击检测 156对区域使用剪辑 157对图像重新着色 158使用颜色矩阵对单色进行变换 158转换图像颜色 160缩放颜色 161旋转颜色 164剪取颜色 166使用颜色重映射表 168打印 169将GDI+输出至打印机 169显示一个打印对话框 172通过提供打印机句柄优化打印 173附录:GDI+参考 176
2024/10/10 11:31:03 1.75MB GDI+ GDI+中文 GDI+帮助
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
Powell算法原理以及相关代码,里面有一个讲解Powell算法的pdf和两个代码,分别是基本Powell和改进Powell,一维搜索方法为黄金分割法,搜索区域获取为进退法。
含大量注释,自学编写的,用于解pdf里面的方程。
如果有问题,请及时联系我,谢谢!!!
2024/10/9 9:47:21 136KB Powell算法 原理 代码 代码注释
1
在Edit控件中输入字符,点击Button控件将输入的字符写入指定的本地TXT文本文件,点击另一个Button控件打开写入的文本。
如果写入的文本不存在,新建文本。
2024/10/8 19:22:11 117.11MB MFC中Ed 获取Edit 写入TXT文
1
有关Android中从图库或拍照获取头像并保存问题
2024/10/8 17:25:24 381KB 安卓头像设置
1
该项目是用原生方法来实现,客户端采集传感器发送过来的数据,然后发送给服务端,服务端接收到的数据进行入库。
所有的参数通过xml配置文件获取,然后用Dom解析xml,通过反射的方法初始化各个对象。
包括有采集模块,网络模块,入库模块,备份模块,日志模块,配置模块,GUI模块等
2024/10/8 0:49:32 1.91MB JavaEE Oracle Log4j
1
经过这几天的学习与调试,终于在STM32F103VCT6+W5500(SPI1)+Freemodbus平台上,实现Modbus-TCP协议的功能。
其实很简单,只要熟悉Modbus-RTU通讯,明白Modbus帧的结构等,Modbus-TCP只是在原来的帧结构上加个头,去个尾,然后用TCP传输即可。
关键的内容就是怎样获取W5500新接收的数据包,并发送给Modbus事件状态机驱动协议的执行,数据的处理。
主要参考Freemodbusdemo里的Modbus-TCP协议实现的思路,获取缓存区的读写与发送响应。
1
获取iOS系统健康数据:卡路里,步数等。
步数可以获取一个时间段,或者实时获取当天步数,自己设置。
参考:http://blog.csdn.net/doing111/article/details/45167317#comments
2024/10/7 13:25:24 7KB 卡路里,计步
1
之前几篇文章我们介绍了如何去获取手机应用程序列表,已经实现对应用程序的一些操作:运行、卸载、分享。
这个三个功能相对是比较简单,对于如何实现对一个应用程序加锁,这个相对复杂一点。
在一些情况下,我们想对一个软件加锁,来保护我们的隐私或者增加安全,比如支付宝、银行软件,这些软件加锁都是有必要。
前一段时间一直忙于项目,没对博客进行跟进,今天我们将介绍一下如何实现软件加锁。
2024/10/6 3:26:30 862KB android popupwindow 应用管理器 加锁
1
USB硬件模拟键鼠,使用系统自带键鼠驱动【工具说明】c#.net3.5版本需要Win7系统或者XP安装.net3.5简易取图工具,用于获取游戏窗体某个位置某个大小的图片,根据指定坐标截取,方便脚本图片对比使用。
因为位置和大小都一样,执行效率高。
文本框输入游戏窗口包含的字符串,下面设置好参数。
点击截取按钮后,激活游戏窗口使位置为最前。
即可成功截取。
2024/10/5 19:49:07 19KB c#截图 c#游戏辅助 c#窗体取图
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡