数字电压表课程设计是我们很多童鞋一起辛苦做出来的劳动成果,里面东西很详细有protues仿真图,keill编程,还有我们使用的元器件的引脚材料图,所以以才值十分,希望下载看了后再给我评价!功能要求:1.用按键选择测量11路0~10V的输入电压值。
2.显示器件为LCD16023.测量的最小分辨率为0.002V,测量误差约为正0.002V所用AD转换器件为TLC549,单片机为89C51最好有超量程报警电路
1
这是一个网格模型的简化算法,运用了二次误差技术。
2016/1/18 20:50:48 1.33MB 网格模型 简化 二次误差
1
设计了一种可用于射频前端芯片供电的高电源抑制比(PSR)无片外电容CMOS低压差线性稳压器(LDO)。
基于对全频段电源抑制比的详细分析,提出了一种PSR加强电路模块,使100kHz和1MHz处的PSR分别提高了40dB和30dB;
加入串联RC补偿网络,保证了电路的稳定性;
在LDO输出至误差放大器输入的反馈回路引入低通滤波模块,降低了由于输出端接不同负载对反馈回路的影响。
电路采用UMC65nmRFCMOS工艺进行设计和仿真,整个芯片面积为0.028mm2,仿真结果表明,本文设计的LDO的相位裕度为86.8°,在100kHz处,PSR为-84.4dB,输出噪声为8.3nV/[Hz],在1MHz处,PSRR为-50.6dB,输出噪声为6.9nV[Hz],适合为噪声敏感的射频电路供电。
1
王惠南编著简介:本书阐述了GPS导航及其应用的基本原理。
全书共分为十章。
目录:前言第一章结论1.1GPS定位技术的发展1.2GPS定位系统的组成1.3美国对GPS用户的限制性政策第二章全球定位系统(GPS)的时空参考系统2.1GPS坐标系统简介2.2天球坐标系2.3地球坐标系2.4全球定位系统(GPS)的时间参考系统第三章卫星的基本运行规律与GPS卫星位置计算3.1GPS卫星的无摄运动3.2GPS卫星无摄运动轨道描述与真近点角f的计算3.3GPS卫星的瞬时位置和速度3.4GPS卫星的受摄运动3.5GPS卫星的星历3.6由卫星预报星历计算GPS卫星坐标第四章GPS卫星的广播信号4.1GPS卫星播发的信号4.2伪随机码扩频与相关接收4.3C/A码与P码4.4GPS卫星信号的构成4.5GPS卫星的导航电文第五章GPS导航定位的观测量、观测方程以及误差分析5.1GPS导航定位的基本观测量5.2测码伪距观测方程5.3测相伪距观测方程5.4观测方程的线性化5.2关于GPS观测量的误差分析第六章GPS静态定位6.1基本概念6.2静态单点定位6.3观测卫星的几何分布及其对单点定位精度的影响6.4静态相对定位6.5静态相对定位的线性化观测方程6.6整周模糊度的确定方法第七章GPS动态定位原理7.1测码伪距动态绝对定位7.2测相伪距动态绝对定位7.3测码伪距动态相对定位7.4测相伪距动态相对定位第八章GPS的载体速度测量、姿势测量以及时间测量8.1GPS接收机的载体速度测量8.2利用GPS载波相位信号确定载体姿势8.3GPS测时第九章GPS/INS组合导航系统9.1简述9.2卡尔曼滤波技术9.3采用卡尔曼滤波器的组合方法9.4采用位置、速度组合的GPS/INS导航系统9.5采用伪距、伪距率组合的GPS/INS导航系统9.6INS速度辅助GPS接收机环路第十章GPS应用技术10.1GPS在飞机精密进场着陆中的应用10.2GPS在空中交通管制(ATC)中的应用10.3GPS在无人驾驶飞机中的应用10.4GPS在弹道轨迹测量中的应用10.5GPS在航空摄影测绘中的应用10.6GPS在自动车辆定位导航系统中的应用10.7GPS在低轨人造卫星中的应用10.8GPS在航天飞机上的应用10.9GPS在航海导航定位中的应用10.10GPS在建立地区性或全国性大地测量控制网中的应用10.11GPS技术在海洋测量中的应用10.12GPS在地球动力学方面的应用10.13GPS在精密工程测量和工程形变监测中的应用10.14GPS/GIS合成系统
2022/10/28 12:47:08 6.57MB GPS 导航
1
采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。
本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。
再使用MATLAB中用于仿真模仿系统的SIMULINK对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模仿、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。
系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。
2020/1/7 15:53:39 175KB 同步 电机 模型
1
利用STC15系列单片机内置SPI功能与24位ADS1256芯片通信。
TI公司的ADS1256芯片属Σ一△型,可支持单端输入和拆分输入,8路通道采样晶振选用7.80MHz,为佳,采样速度最好控制在2.5~10sps为佳经过实际电压监测,误差可以减小到0.00001V之内对适用于高精度监测仪器很有协助!
2016/11/25 4:28:44 9.96MB ADS1256
1
(1)基本要求:a.被测信号的频率范围为1~20kHz,用4位数码管显示数据。
b.测量结果直接用十进制数值显示。
c.被测信号可以是正弦波、三角波、方波,幅值1~3V不等。
d.具有超量程警告(可以用LED灯显示,也可以用蜂鸣器报警)。
e.当测量脉冲信号时,能显示其占空比(精度误差不大于1%)a.实现自动切换量程。
b.构思方案,使整形时,跳变阈值自动进行调理,以实现扩宽被测信号的幅值范围。
1
根据二维空间内目标作匀速直线运动和匀速圆周运动的特点,在建立目标运动模型和观测模型的基础上采用基于交互多模算法(IMM)的卡尔曼滤波器对机动目标进行跟踪。
仿真结果表明,该算法不只能够对匀速直线运动和匀速圆周运动的目标进行跟踪,而且在运动模型发生变化时,滤波误差也比较小。
2021/1/10 13:56:13 59KB 卡尔曼滤波器
1
目录第一章引言 11.1图像质量评价的定义 11.2研究对象 11.3方法分类 21.4研究意义 3第二章历史发展和研究现状 42.1基于手工特征提取的图像质量评价 42.1.1基于可视误差的“自底向上”模型 42.1.1.1Daly模型 42.1.1.2Watson’sDCT模型 52.1.1.3存在的问题 52.1.2基于HVS的“自顶向下”模型 52.1.2.1结构相似性方法 62.1.2.2信息论方法 82.1.2.3存在的问题 92.2基于深度学习的图像质量评价 102.2.1CNN模型 102.2.2多任务CNN模型 122.2.3研究重点 15第三章图像质量评价数据集和功能指标 163.1图像质量评价数据集简介 163.2图像质量评价模型功能指标 17第四章总结与展望 194.1归纳总结 194.2未来展望 19参考文献 21第一章引言随着现代科技的发展,诸如智能手机,平板电脑和数码相机之类的消费电子产品快速普及,已经产生了大量的数字图像。
作为一种更自然的交流方式,图像中的信息相较于文本更加丰富。
信息化时代的到来使图像实现了无障碍传输,图像在现代社会工商业的应用越来越广泛和深入,是人们生活中最基本的信息传播手段,也是机器学习的重要信息源。
图像质量是图像系统的核心价值,此外,它也是图像系统技术水平的最高层次。
但是,对图像的有损压缩、采集和传输等过程会很容易导致图像质量下降的问题。
例如:在拍摄图像过程中,机械系统的抖动、光学系统的聚焦模糊以及电子系统的热噪声等都会造成图像不够清晰;
在图像存储和传输过程中,由于庞大的数据量和有限通讯带宽的矛盾,图像需要进行有损压缩编码,这也会导致振铃效应、模糊效应和块效应等图像退化现象的出现。
所以,可以说图像降质在图像系统的各个层面都会很频繁地出现,对图像质量作出相应的客观评价是十分重要且有意义的。
为了满足用户在各种应用中对图像质量的要求,也便于开发者们维持、控制和强化图像质量,图像质量评价(ImageQualityAssessment,IQA)是一种对图像所受到的质量退化进行辨识和量化的
1
自己在实际工程中编写的基于PLC的模糊自整定PID温度控制系统代码,基于S7-200PLC。
采用自带PID控制器,通过e和ec,也就是误差和误差变化量进行模糊控制,调理PID参数大小,使PID参数可以自动调理。
2018/6/22 23:23:38 11KB PLC 模糊 自适应 PID
1
共 563 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡