在Matlab环境下识别男女声,主要方法是利用倒频谱检测基音频率,基因频率是区分男女声的特征
1
静脉识别,生物识别的一种。
静脉识别系统一种方式是通过静脉识别仪取得个人静脉分布图,依据专用比对算法从静脉分布图提取特征值,另一种方式通过红外线CCD摄像头获取手指、手掌、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,实现特征值存储。
静脉比对时,实时采取静脉图,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,采用复杂的匹配算法同存储在主机中静脉特征值比对匹配,从而对个人进行身份鉴定,确认身份。
2024/9/3 5:18:33 405KB 静脉识别 matlab 图像处理
1
keras实现中文文本分类;
实现中文分析,词向量引入;
基于语义的特征卷积计算,实现文本分类。
2024/9/2 20:35:08 6KB textCNN
1
完整的指纹识别程序,包括预处理,特征提取,匹配等
2024/9/2 18:06:37 15.77MB vc 指纹 源码
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
工信部所发区块链白皮书,做产品首先要研究国家标准、行业标准,白皮书是首选,文中介绍区块链的特征、涵盖面、应用领域等欸容
2024/9/2 13:19:51 2.18MB 区块链 白皮书
1
题目提供的训练数据集包含11个特征,分别是:Survived:0代表死亡,1代表存活Pclass:乘客所持票类,有三种值(1,2,3)Name:乘客姓名Sex:乘客性别Age:乘客年龄(有缺失)SibSp:乘客兄弟姐妹/配偶的个数(整数值)Parch:乘客父母/孩子的个数(整数值)Ticket:票号(字符串)Fare:乘客所持票的价格(浮点数,0-500不等)Cabin:乘客所在船舱(有缺失)Embark:乘客登船港口:S、C、Q(有缺失)
1
本程序实现了对影像特征点自动提取,利用Morevac、Forstner、Harris3个经典算子。
在此基础上利用相关系数法实现影像自动匹配,并且引入最小二乘平差,使匹配点精度有所提高。
在搜索点过程中,利用了核线影像特性,对二维影像搜索使用了爬山法启发式搜索。
对大数据量影像采用影像金字塔结构处理。
1、使用GDAL库读取影片,支持TIFF、PNG、JPEG、JPG、BMP、GIF、IMG格式读取。
使用GDI绘图。
2、防止大数据量绘图视图闪烁,图片显示采用双缓存技术。
3、保存视图数据为图片文件,支持TIFF、PNG、JPEG、JPG、BMP、GIF格式保存。
4、TreeCtrl控件、ListCtrl控件的基本操作。
5、MFC单文档程序视图通讯、更换视图、视图分割。
1
《ANSYS_LS_DYNA模拟鸟撞飞机风挡的动态响应》鸟撞问题在飞机设计中至关重要,尤其是在飞机起飞和降落时,高速运动的飞机与鸟类相撞可能导致严重损伤,甚至造成机毁人亡的灾难。
特别是飞机的前风挡部分,由于迎风面积大,成为鸟撞概率较高的区域,而风挡玻璃的强度相对较低,因此对风挡受鸟撞冲击的模拟分析显得尤为必要,以提升飞行安全性。
早期的抗鸟撞设计主要依赖实验方法,但随着计算机技术和有限元数值计算理论的发展,现在越来越多地采用数值计算来分析鸟撞问题。
目前的有限元模型主要分为解耦解法和耦合解法。
解耦解法将鸟撞冲击力作为已知条件,单独求解风挡的动态响应,但鸟撞载荷模型的不确定性会影响求解精度。
耦合解法则考虑碰撞接触,通过协调鸟体与风挡接触部位的条件,联合求解,能更直观地模拟整个鸟撞过程。
本文采用ANSYS_LS_DYNA软件,建立鸟撞风挡的三维模型,研究鸟撞风挡的动态响应特征。
在建立有限元模型时,使用ANSYS软件,简化了计算过程,忽略了对风挡动态响应影响不大的结构因素,如机身、后弧框和铆钉等,将其替换为边界固定。
风挡结构为圆弧形,材料为特定型号的国产航空玻璃,鸟撞击点设在风挡中部,撞击角度为29°。
选用LS-DYNA材料库中的塑性动力学材料模型,破坏准则设定为最大塑性应变失效模式,当材料塑性应变达到5%时材料破坏。
鸟体的模拟是鸟撞分析的一大挑战,由于真实鸟体的本构特性难以准确描述,通常采取弹性体、弹塑性体或理想流体等简化模型。
本文中,鸟体被简化为质量1.8kg、直径14cm的圆柱体,材料选用弹性流体模型。
计算结果显示,当鸟撞速度达到540km/h(相对于风挡的绝对速度)时,风挡的后弧框处有效塑性应变达到5%,风挡破坏。
据此,计算得出风挡的安全临界速度为150m/s。
在这一速度下,风挡后弧框处首先发生破坏,成为结构弱点。
撞击时的最大应力主要集中在后弧框及其下方,而非撞击点。
此外,鸟撞还会导致风挡结构产生位移。
风挡下方通常布置有精密仪器,因此必须考虑鸟撞引起的位移情况。
鸟体撞击后在风挡上滑行,挤压风挡表面,产生较大位移。
计算表明,在150m/s的撞击速度下,最大位移可达38mm,位于撞击点和后弧框之间。
风挡表面位移随着时间呈现出先向下位移,然后因弯曲波反弹而振荡的行为。
总结来说,鸟撞风挡的最危险区域位于后弧框及其下方。
不同结构的风挡有不同的鸟撞安全临界速度、最大位移和撞击时间。
对于本文的风挡模型,临界速度为450km/h,最大位移为38mm,撞击时间约为7ms。
这些分析结果对于飞机设计改进和飞行安全性的提升具有重要指导意义。
2024/9/1 16:57:18 218KB dyna
1
shearlet变换的matlab代码。
图像经过某种离散变化后的能力分布体现了图像的变换特征,从无失真压缩的角度考虑,变换的目的是希望图像经离散变换后能力尽可能的集中在少量的几个系数中,即具有能量聚集性,由此可得到较高的压缩比。
图像经过Shearlets变换后,能量的分布会随着变换尺度n的变换尺度呈现出一定的规律。
2024/9/1 6:49:54 13.87MB shearlet变换
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡